Composite Connections Lyon 2020

What the lattice can say about models for **composite Higgs and top**

Benjamin Svetitsky Tel Aviv University

TACO Collaboration: T. DeGrand, M. Golterman, D. Hackett, W. Jay, E. Neil, Y. Shamir, BS

- List of models based on AF gauge theories w/o elementary scalars: Ferretti & Karateev (1312.5330)
- Most economical model M6 discussed by Ferretti (1404.7137,1604.06467)
 - SU(4) gauge theory, quartet fermions and sextet fermions (TACO since 2015)

COMPOSITE HIGGS

(Georgi & Kaplan 1984)

- SU(4) hypercolor gauge theory: new strong sector with scale $\Lambda_{\rm HC} \gg v$ (5 TeV vs 246 GeV)
- 5 Majorana fermions Q in sextet rep \Longrightarrow SU(5) global (chiral) symmetry
- Hypercolor theory breaks SU(5) → SO(5) (Peskin 1980)
 Let Higgs multiplet ⊂ Goldstone bosons, so m_h = 0 and in fact V(h) = 0: Goldstone Higgs protected from Λ_{HC} [also SO(5) ⊃ SU(2)_L × U(1) and SU(2) custodial symmetry]
- Couple to gauge bosons/fermions of SM, generate

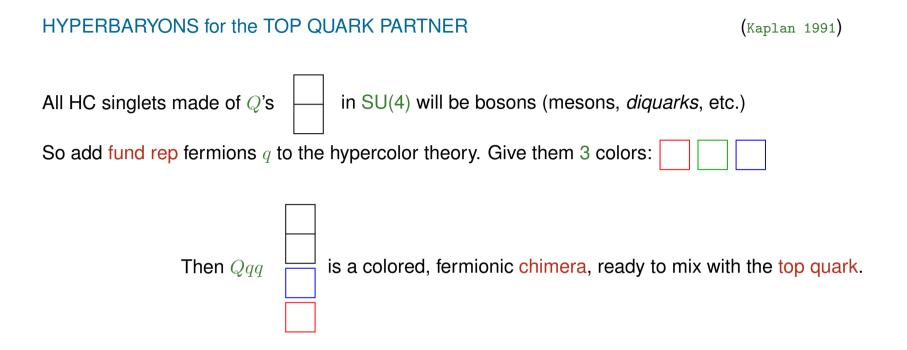
$$V_{\rm eff}(h) = -\alpha \cos^2(h/f) - \beta \sin^2(2h/f)$$

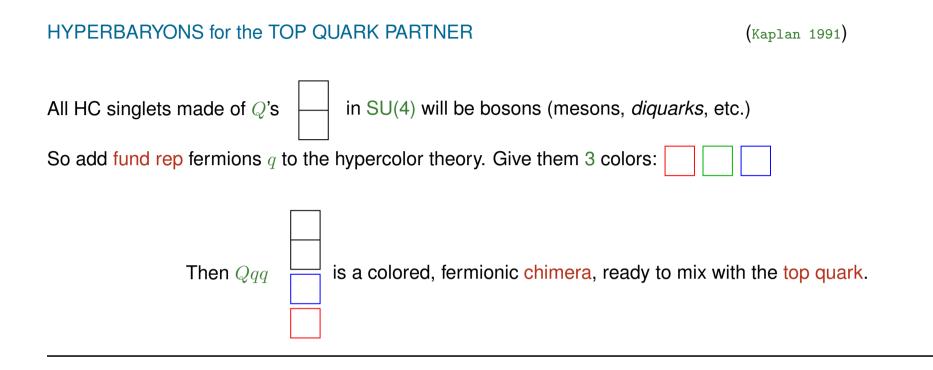
• If $4\beta > \alpha$ then h = 0 is unstable, $v = \sqrt{2} \langle h \rangle$ given by

$$\cos(\sqrt{2}v/f) = \alpha/(4\beta) \implies (v/f)^2 \approx 1 - \alpha/(4\beta)$$

note $v \ll f$ demands α close to 4β — not tuning but a (calculable?) test!

1st term (+ curvature): $\alpha = \frac{1}{2}(3g^2 + g'^2)C_{LR} + \text{ top loops}^*$ NEEDED: LECs in the HC theory2nd term (- curvature): $\beta = \text{top loops}^*$ NEEDED: LECs in the HC theory





MIXING with the top quark:

- Assume extended gauge sector at $\Lambda_{\rm EHC} \gg \Lambda_{\rm HC}$ to generate 4-fermion interaction tQqq
 - mix t quark with chimera, generate t mass via seesaw.
 - t mass, Yukawa coupling \Leftrightarrow LEC

THE simplified LATTICE THEORY:

[LECs fairly insensitive to N_f — cf. QCD]

- SU(4) gauge theory
 - $2 \times$ sextet fermions Q (not 2.5)
 - $2 \times$ quartet fermions q (not 3)

producing

- $\bar{Q}Q$ mesons, including Goldstone bosons for "Higgs field"
- $\bar{q}q$ mesons, including (colored) Goldstone bosons
- U(1) (pseudo-)Goldstone boson
- q^4 , Q^6 baryons
- Qqq chimera baryons for mixing with "top quark"

Inputs to each simulation:

• gauge coupling β , fermion masses κ_4, κ_6

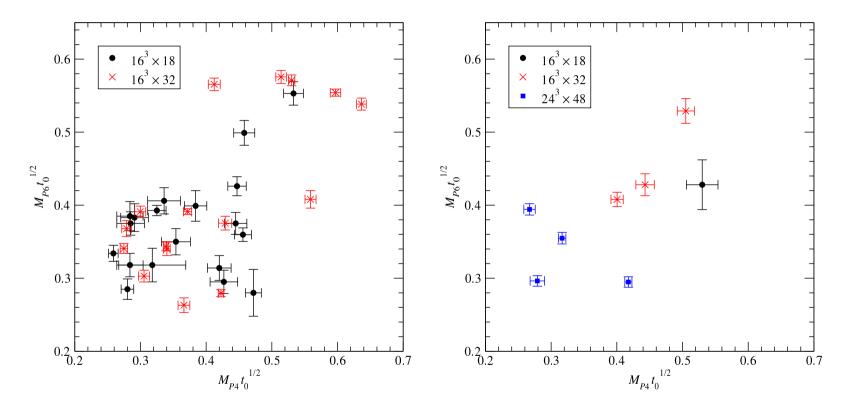
giving

- scale t_0 from gradient flow \Longrightarrow lattice spacing in physical units
- meson/baryon masses (in physical units), AWI quark masses (ditto) ⇒ Chiral PT
- current matrix elements \Longrightarrow LECs

Results: MAP OF $J^P = 0^-$ MESON MASSES

coarse lattice: $1/a \simeq 1.4 \text{ GeV}$

fine lattice: $1/a \simeq 2.1 \text{ GeV}$



Scale: if this were QCD $t_0^{-1/2} = 1.4 \text{ GeV}$

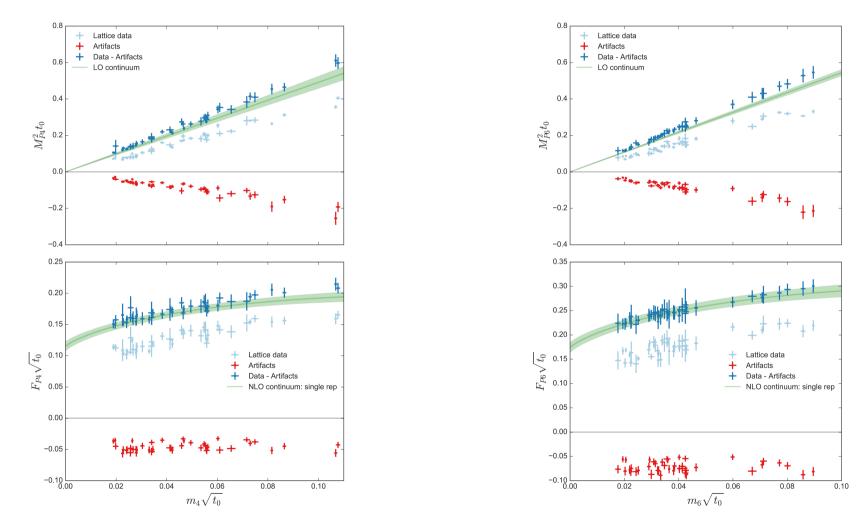
CHIRAL PERTURBATION THEORY — for two inequivalent chiral fields. E.g.,

$$(\hat{M}_{P4}^2)^{\text{NLO}} = 2\hat{m}_4 \mathring{B}_4 \left(1 + L_{44}^M \hat{m}_4 + L_{46}^M \hat{m}_6 + \frac{1}{2} \Delta_4 - \frac{4}{5} \Delta_\zeta \right) + \mathring{W}_{44}^M \hat{a} \hat{m}_4 + \mathring{W}_{46}^M \hat{a} \hat{m}_6 + \mathring{W}_4^M \hat{a}^2 , (\hat{M}_{P6}^2)^{\text{NLO}} = 2\hat{m}_6 \mathring{B}_6 \left(1 + L_{66}^M \hat{m}_6 + L_{64}^M \hat{m}_4 - \frac{1}{4} \Delta_6 - \frac{1}{5} \Delta_\zeta \right) + \mathring{W}_{66}^M \hat{a} \hat{m}_6 + \mathring{W}_{64}^M \hat{a} \hat{m}_4 + \mathring{W}_6^M \hat{a}^2 ,$$

• $\bar{q}q \equiv 4$, $\bar{Q}Q \equiv 6$

- m_4, m_6 quark masses, extracted from axial Ward identities \implies we want $m_6 \rightarrow 0$ [Higgs = Goldstone boson]
- Cross terms! L_{46}, L_{64} in NLO
- Δ 's are the usual chiral logs. Note Δ_{ζ} from U(1) GB.
- *W*'s are discretization effects subtract them from data \implies i.e., $a \rightarrow 0$

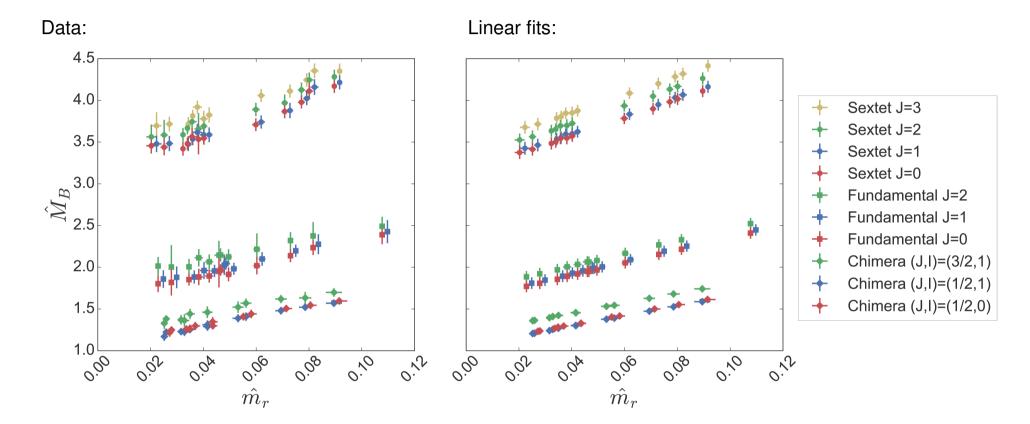
$\chi {\rm PT}$ for $\bar{q}q$ MESONS



Note decay constants F_4, F_6 ; also vector boson masses

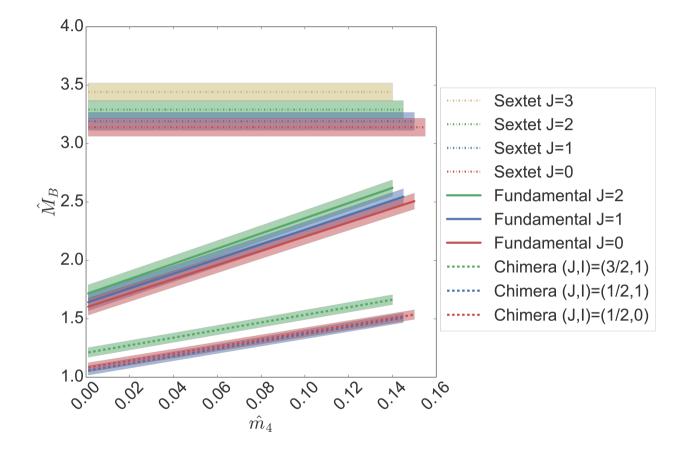
$\chi {\rm PT}$ for $\bar{Q}Q$ MESONS

BARYON MASSES: 6Q, 4q, and $\ldots Qqq$ (the chimera)



 $\hat{m}_r = \hat{m}_6, \ \hat{m}_4, \ a\hat{m}_4 + b\hat{m}_6$ resp.

Chiral sextet limit $m_6 \rightarrow 0$ (6Q, 4q, Qqq)



Bottom line: $F_6 \gtrsim 1.1 \text{ TeV} \Longrightarrow M_{\text{Chimera}} \gtrsim 6.5 \text{ TeV}, M_V \gtrsim 5 \text{ TeV}.$

LOW-ENERGY CONSTANT C_{LR} : the gauge contribution to the COMPOSITE HIGGS POTENTIAL

$$C_{LR} = \int_0^\infty dq^2 q^2 \,\Pi_{LR}(q^2)$$

where Π_{LR} is the transverse part of

$$\Pi_{\mu\nu}(q) = -\int d^4x \, e^{iqx} \left\langle J^L_{\mu}(x) J^R_{\nu}(0) \right\rangle \qquad \text{(currents of 6 fermions)}$$

Chiral & continuum limit: m_6 , $a \rightarrow 0$ [no discernible dependence on m_4]

RESULT:

$$\frac{C_{LR}}{F_6^4} = 29(8)(5)$$

Cf. QCD:

$$m_{\pi^{\pm}}^2 - m_{\pi^0}^2 = \frac{3\alpha}{4\pi} \frac{C_{LR}}{f_{\pi^2}^2} \implies \frac{C_{LR}}{f_{\pi^4}^4} \approx 42$$

(Das, Guralnik, Mathur, Low, and Young 1967)

— not too different.

MIXING WITH THE TOP QUARK — 4-fermion interaction in the HC theory

 $V_{\text{top}}^{\text{HC}} = G_R \bar{t}_L B_R + G_L \bar{t}_R B_L + \text{h.c.} \quad -t \equiv \text{top quark}, B \equiv Qqq$

where $G_{L,R} \sim g_{\rm EHC}^2 / \Lambda_{\rm EHC}^2$. Then $t \leftrightarrow B$ mixing \Longrightarrow

$$m_t \approx G_L G_R \frac{Z_L Z_R}{M_B} \frac{v}{F_6} \qquad \left(= y_t v\right)$$

where $Z_{L,R}$ are matrix elements (*cf. proton decay in QCD*)

$$\left\langle 0 \left| (Qqq)_{L,R}^{\alpha} \right|$$
Chimera $\right\rangle = Z_{L,R} u^{\alpha}$

Result: $Z_L \simeq Z_R \equiv Z$ and

 $Z/F_6^3 \simeq 0.35(8)$ Cf. QCD: $Z/f_{\pi}^{3} \simeq 7$ — a factor of 20!

Rearrange:

$$y_t \approx \left(\frac{g_{\rm EHC}F_6}{\Lambda_{\rm EHC}}\right)^4 \left(\frac{Z}{F_6^3}\right)^2 \frac{F_6}{M_B} \simeq 0.01 \left(\frac{g_{\rm EHC}F_6}{\Lambda_{\rm EHC}}\right)^4$$

But $y_t \simeq 1$ and certainly $g_{\rm EHC} < 1$, so

$$\frac{F_6}{\Lambda_{\rm EHC}}\gtrsim 3$$

contradicting $\Lambda_{\rm EHC} \gg F_6$. BAD.

(\implies large 4-fermi interactions at Λ_{HC} , etc.)

*** A *general problem*: Even if Z/F_6^3 comes out large, it's hard to push Λ_{EHC} very far. Required: an enhancement (that recalls WALKING TECHNICOLOR).

Again

$$y_t \approx G_L G_R \frac{Z_L Z_R}{M_B} \frac{1}{F_6}$$
,

$$G_{L,R} \sim g_{\rm EHC}^2 / \Lambda_{\rm EHC}^2$$
 .

and we need a large $G_{L,R}$ — but at the HC scale where Z is measured:

$$G(\Lambda_{\rm HC}) = G(\Lambda_{\rm EHC}) \exp\left(-\int_{\Lambda_{\rm HC}}^{\Lambda_{\rm EHC}} \gamma_B(g_{\rm HC}(\mu)) \frac{d\mu}{\mu}\right)$$

where γ_B is the anomalous dimension of Qqq. This can be much bigger if γ_B is large (and < 0).

ls it?

Not in this theory — which resembles QCD (dynamically speaking).

WHAT HAPPENS IN OTHER MODELS?

Look for models with large γ_B AND large Z —

- E.g., add quartet flavors approach conformality (?), larger anomalous dimensions (?)
- Or maybe ... other models entirely (Franzosi & Ferretti 1905.08273)
 - M11 also SU(4) gauge group but $4 \times$ quartet fermions + $3 \times$ (Dirac) sextet fermions
 - M5 Sp(4) gauge theory $\implies SU(4)/Sp(4)$ composite Higgs

(E. Bennett, et al. 1712.04220 et seq.)
(TODAY: David Lin, Jong-Wan Lee)

LOW-ENERGY CONSTANT L_{10} ; and S

In the chiral Lagrangian, L_{10} is the LEC that multiplies

$$\mathcal{O}_{10} = -\mathrm{tr} \left((\mathcal{V}_{\mu\nu} - \mathcal{A}_{\mu\nu}) \Sigma (\mathcal{V}_{\mu\nu} + \mathcal{A}_{\mu\nu}) \Sigma^{\dagger} \right)$$

- coupling of Higgs to external field strengths. Calculate from fit to current correlator:

$$\hat{\Pi}_{LR}(q^2) = \frac{\mathcal{G}(N)}{48\pi^2} \left[\frac{1}{3} + \log\left(\frac{M_{vs}^2}{\mu^2}\right) - H(s) \right] + 8L_{10}$$

where

$$\hat{\Pi}_{LR}'(q^2) = \frac{F^2}{q^2} + \hat{\Pi}_{LR}(q^2)$$

is the longitudinal part of

$$\Pi_{\mu\nu}(q) = -\int d^4x \, e^{iqx} \left\langle J^L_\mu(x) J^R_\nu(0) \right\rangle$$

Result: $L_{10} = -0.0100(12)(35)$. So . . .

- contributes to $H \rightarrow gg, WW^*$, etc.
- gives $S_{HC} = 0.8(2)\xi$ Expt: S < 0.09 OK if $\xi \equiv 2(v/F)^2 < 0.11(3)$, consistent with other estimates

Can we calculate ξ ? Back to $V_{\text{eff}}(h) \Longrightarrow$ we need several LECs $\{C_i\}$ of top loops. ... Lattice relates these to 4-fermi couplings $\{G^a\}$ — but we have no knowledge of $\{G^a\}$!

SUMMARY

Composite Higgs/top model (almost M6):

SU(4) gauge theory, $2 \times$ quartet fermions $+ 2 \times$ sextet fermions

- 1. Masses of mesons, top partner straightforward. Lower limits on Λ_{HC} .
- 2. Gauge loop $C_{LR} = \int_0^\infty dq^2 q^2 \Pi_{LR}(q^2) \Longrightarrow$ a piece of the Higgs potential. No surprises.
- 3. LEC L_{10} together with S gives bound on $\xi = 2(v/F)^2$
- 4. Top quark mixing: Too small! Doesn't work!

FUTURE

- Lots more models. Look for larger Z and/or large γ_B .
- Systematic study of LECs requires systematics of 4-fermi couplings that come from EHC.

EXTRA C_{LR} : THE GAUGE CONTRIBUTION IN THE COMPOSITE HIGGS POTENTIAL

