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- Previous work on the lattice studies of Sp(2N) gauge theories
Glueballs & quenched meson spectrum of Sp(4)

Casimir scaling in pure SU(N), SO(N) & Sp(2N) gauge theories

Meson spectrum of Sp(4) with Nf=2 dynamical fundamental fermions

Quenched meson spectrum of Sp(4) with fundamental & antisymmetric fermions

Scalar and tensor glueballs in Sp(2N) gauge theories
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bounds on the singlet pNGBs in Section IV. We o↵er our conclusions in Section V.

II. UNDERLYING MODELS FOR A COMPOSITE HIGGS WITH TOP PARTIAL

COMPOSITENESS

Coset HC  � �q�/q Baryon Name Lattice

SU(5)

SO(5)
⇥ SU(6)

SO(6)

SO(7)
5⇥ F 6⇥ Sp

5/6
 ��

M1

SO(9) 5/12 M2

SO(7)
5⇥ Sp 6⇥ F

5/6
  �

M3

SO(9) 5/3 M4

SU(5)

SO(5)
⇥ SU(6)

Sp(6)
Sp(4) 5⇥A2 6⇥ F 5/3  �� M5

p

SU(5)

SO(5)
⇥ SU(3)2

SU(3)

SU(4) 5⇥A2 3⇥ (F,F) 5/3
 ��

M6
p

SO(10) 5⇥ F 3⇥ (Sp,Sp) 5/12 M7

SU(4)

Sp(4)
⇥ SU(6)

SO(6)

Sp(4) 4⇥ F 6⇥A2 1/3
  �

M8
p

SO(11) 4⇥ Sp 6⇥ F 8/3 M9

SU(4)2

SU(4)
⇥ SU(6)

SO(6)

SO(10) 4⇥ (Sp,Sp) 6⇥ F 8/3
  �

M10

SU(4) 4⇥ (F,F) 6⇥A2 2/3 M11
p

SU(4)2

SU(4)
⇥ SU(3)2

SU(3)
SU(5) 4⇥ (F,F) 3⇥ (A2,A2) 4/9   � M12

TABLE I. Model details. The first column shows the EW and QCD colour cosets, respectively, followed

by the representations under the confining hypercolour (HC) gauge group of the EW sector fermions

 and the QCD coloured ones �. The �q�/q column indicates the ratio of charges of the fermions

under the non-anomalous U(1) combination, while “Baryon” indicate the typical top partner structure.

The column “Name” contains the model nomenclature from Ref. [27], while the last column marks

the models that are currently being considered on the lattice. Note that Sp indicates the spinorial

representation of SO(N), while F and A2 stand for the fundamental and two-index anti-symmetric

representations.

In this work we are interested in the underlying models for composite Higgs with top partial

compositeness defined in Ref. [24]. These models characterise the underlying dynamics below

the condensation scale ⇤ ⇡ 4⇡f , f being the decay constant of the pNGBs. As such, the need to

be outside of the conformal window: this leaves only 12 models [36], listed in Table I. They are

defined in terms of a confining gauge interaction, that we call hypercolour (HC), and two species

of fermions in two di↵erent irreducible representations of the HC. The two species of fermions

play di↵erent roles: the EW charged  generate the Higgs and the EW symmetry breaking
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Cacciapaglia, Ferretti, Flacke &  Serodio (2019)

1712.04220

1705.00286

1909.12662

1912.06505

Motivation - Sp(2N) gauge theory

2004.11063

+ Very little is known in 
lattice community

Holland, Pepe & Wiese (2003)

modern composite Higgs

+ composite dark matter

+ universalities in Yang-Mills



Barnard, Gherghetta & Ray (2014)

Global symmetry 

Top partner = Chimera baryon

carry color charge

SM EW

Figure 1. The moose diagram representing the EFT description of the vector mesons in the model.

symmetry [17–19]. One extends the symmetry from SU(4) to SU(4)A ⇥ SU(4)B, with
SU(4)A weakly gauged, with coupling g⇢. Then one enlarges the field content to include
two non-linear sigma-model fields S and ⌃. The non-linear sigma-model S transforms as
the bifundamental of SU(4)B ⇥SU(4)A, while the field ⌃ transforms on the antisymmetric
of SU(4)A:

S ! UB S U †
A
, ⌃ ! UA⌃U

T

A . (2.14)

In a composite Higgs model, the SM gauge group SU(2)L⇥U(1)Y is a subgroup of SU(4)B.
The gauging of the SU(4)A symmetry means that (for global SU(4)B) one has to

introduce the covariant derivatives

DµS = @µS � i g⇢SAµ , (2.15)
Dµ⌃ = @µ⌃ + i g⇢

�
Aµ⌃ + ⌃AT

µ

�
, (2.16)

and then L0 is replaced by all possible 2-derivative invariant operators made by S, ⌃, DS,
D⌃, together with the kinetic term for the gauge bosons. Both S and ⌃ are non-vanishing
in the vacuum, inducing the symmetry breaking pattern SU(4)A ⇥ SU(4)B ! Sp(4), and
all vectors are massive. h⌃i splits the mass of the 5 a1 and the 10 ⇢ mesons.

In unitary gauge, besides the heavy vectors only the physical pions are retained. They
are linear combinations of the fluctuations of S and ⌃. The mass term for the pions is

Lm = �
v3

4
Tr

n
M S ⌃ST

o
+ h.c. . (2.17)

The quark masses also contribute to the masses of the spin-1 states in a more complicated
way, that will be discussed elsewhere [30].

In the absence of the antisymmetric condensate (for h⌃i = 0), ⇢ and a1 mesons would
be exactly degenerate. Their mass splitting is hence a measure of the amount of breaking
SU(4) ! Sp(4). In the main body of the paper we use the mass splitting between ⇢

(vector) and a1 (axial-vector) as a way to test whether the global symmetry is restored at
high temperatures. The generalization to the case in which ⌃ is replaced by H̃ does not
require any new ingredients. In particular the restoration of the axial U(1)A and of the
chiral SU(4) can, at least in principle, be treated independently. We summarize in Table 2
the properties of the states discussed in the body of the paper. One of the purposes of this
paper is to make the first steps towards a quantitative assessment of the relation between
the two phenomena at high temperature, in the specific theory of interest here.
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Sp(4) SO(6)SU(3)c x U(1)Y

SM Strong

4 of 5 PNGBs: Higgs doublets

• N=2 to make it economic & QCD-like (or near-conformal)

e.g.

2 Dirac flavors in 
fund. rep.

3 Dirac flavors in 
anti-sym. rep.

- UV realization of SO(6)/SO(5)~SU(4)/Sp(4) CH model from Sp(2N) gauge theory

where the dimesionful LECs are normalized by w0 and part of them absorb the coefficient
2B̂ = 2Bw0 of the LO relation for m̂

2

PS

f̂ = fw0, F̂ = Fw0, ŷ3 =
y3

2B̂w0

, ŷ4 =
y4

2B̂w0

, v̂1 =
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2B̂
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v2w0

2B̂
. (5.6)
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g
2

V
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⇡), (5.7)

m
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2 + 2mv1

�
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�
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AV (5.13)
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PS = m(v3 + mv
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5) (5.14)

m̂
2

PS ⌧ 0.67 (5.15)

SU(2) ⇠ Sp(2) (5.16)

fPS ⇠

p
Nc (5.17)

hSi 6= 0 (5.18)

⇢ (5.19)

SU(4)/Sp(4) (5.20)

⇠ SO(6)/SO(5) (5.21)

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
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y3

2B̂w0

, ŷ4 =
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• Easily accommodated with the lattice Monte Carlo simulation

Sp(4) composite Higgs & Top partial compositeness

Ferretti & Karateev (2013)

✓ Confirm the IR dynamics: confinement, chiral symmetry breaking, …

✓ Predictions: mass spectra, low-energy constants, …
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Figure 1: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at
� = 6.4, 6.5 and 6.6 from left to right, respectively. The red and blue symbols denote the
expectation values of the plaquette hP i obtained from random (hot) and unit (cold) initial
configurations on a 84 lattice.

 ̂a↵b
⌘

⇣
 
a
�
↵
 
b
⌘

(2.2)

Uµ(x) 2 Sp(4) & j = 1, 2, 3 (2.3)

� = 7.62, 7.7, 7.85, 8.0, 8.2 (2.4)

f̂PS m̂PS m̂V(T) m̂AV,AT,S (2.5)

p
[dim(R)]

mV

fPS
⇠ constant (2.6)

h0|Oav|psi = h0| 1�5�µ 2|psi ⌘ fps pµ,

h0|Ov|vi = h0| 1�µ 2|vi ⌘ fv mv ✏µ,

h0|Oav|avi = h0| 1�5�µ 2|avi ⌘ fav mav ✏µ, (2.7)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this

– 2 –
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Figure 4: Models M7 to M12 and their neighbours with NX representing the number of Weyl fermions

in the X representation. Yellow circles represent potentially confining models whereas blue circles

represent models likely to be in the conformal window, with the estimated maximal and minimal

value of �⇤ displayed. Our heuristic arguments for this classification are described in the text. The

red dashed curve indicates the “conformal house” [20] prescription.
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Some features expected from analytical studies

- The Sp(4) model is expected to be confined in the IR, but could be near-conformal.

●●

� � � � � �� ���

�

�

�

�

�

�

� Trivial  
(non-abelian QED)

Asymptotically free

IR Conformal

Broken

Franzosi & Ferretti (2019)Kim, Hong, JWL (2020)

- To have the top Yukawa coupling,            , it is preferred to have a large anomalous 
dimension for the top-partner,                      with               . The 1-loop result finds 
somewhat smaller values of     , but could be largely changed by higher order terms.

Conformal window from conformal expansion Anomalous dimension of top-partner

composite operator O, representing the top-partner, has scaling dimension � = 9/2+�
⇤. Under some

specific assumptions, [11] shows that at the scale ⇤HC the Yukawa coupling turns out to be 2

yt ⇡ 0.06

 
g
2

F

⇤2

F

✓
⇤HC

⇤F

◆�⇤!2

f
4
. (1)

The small coe�cient in front of (1) is problematic, since we need yt ⇡ 1. To overcome this problem

requires �3 < �
⇤
< �2, the lower bound being required by unitarity. Notice however that even a

larger value for the coe�cient would require similarly strong renormalization e↵ects, �⇤ ⇡ �2.

To assess the viability of models of this type it is thus necessary to understand where the edge

of the conformal window for such theories lie and what the anomalous dimensions of the fermionic

operators at the edge might be. Both of these issues can only be truly answered by strong coupling

techniques, such as lattice gauge theory. In this paper we content ourselves with performing various

perturbative computations.

We start by revisiting the results of [17] and extending them to all other relevant cases by using

the convenient Weyl formalism, used in [18] for baryons in QCD. As for the search of a fixed point,

we are forced to be more qualitative, but we use the state of the art four-loop �-function for generic

gauge theories with multiple fermionic irreps of Zoller [19].

Having stated up-front that a perturbative analysis will never be able to quantitatively answer the

question of phenomenological interest, what is the use of doing it? In our opinion, the main reason is

to guide us towards the most promising models, and to qualitatively assess the likelihood that such

large anomalous dimensions might be realized. As an extreme case, imagine comparing two theories,

one that has a positive one-loop �-function and one that has a negative one. Clearly, given the need

to have �
⇤
< �2 at the fixed point, the second one will make a more promising candidate for a non

perturbative analysis. Similar heuristic considerations can be made about the existence of fixed points

and their relative strength. Given the amount of e↵ort required to perform a lattice calculation, such

small hints can be valuable.

The paper is organized as follows: In Section 2 we present the computation of the one-loop �-

function in full generality using the Weyl spinor formalism. This generalizes the results of [17] to all

possible models.

In Section 3 we try to estimate the edge of the conformal window. We use various heuristic

arguments such as stability considerations and the proposed criteria of [20, 21, 22]. We apply the

results to the models of phenomenological interest denoted M1...M12 in [7]. We compare the �-

functions of the various operators in the models and estimate the numerical values of the anomalous

dimensions of those corresponding to potential top-partners.

2From [11], this number comes about as ((0.3)2/6) ⇥ 4, where 0.3 and 6 are the overlap functions Z and the top-
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in some models the top-partners do not stand out as those with the leading anomalous dimensions

among all the spin 1/2 operators.

A two-loop computation of the anomalous dimensions for these objects would be interesting, if only

to see if the above trends continue. It is reasonable to expect, comparing with the QCD results [27] [30],

that the two-loop �-function for the top-partners has the same sign as the one-loop one, helping making

the partners anomalous dimensions more negative for the same value of the critical coupling.

As hopefully we made clear in the main text, while the computation of the �-function stands on

firm footing, the estimate of the anomalous dimension �
⇤ involves a fair amount of assumptions and

speculations. We see no harm in doing this as long as we only use them as a guidance. However,

by themselves, these perturbative computations cannot be taken as a proof (or a disproof) of any

statement about the validity of these models.

A last subject discussed in this paper, confined to the Appendix but of broader interest than just

to Partial Compositeness, is the computation of the group theory factors that enter in the expression

of the four-loop �-function in multi-fermions theories [19]. Here we present practical formulas and

numerical results, a few of them new to our knowledge, to facilitate working with fourth-order Casimir

operators, their corresponding invariant tensors and the products of such tensors between di↵erent

irreps.
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A Useful tables of fourth-order invariants

In this appendix we collect a few results on fourth order indices for simple Lie algebras that are useful

for higher loop computations, independently on the applications to partial compositeness.

For any simple Lie algebra 5
L it is always possible, convenient and su�ciently general to chose the

generators T a in an arbitrary irrep R to be orthogonal and uniformly normalized, that is: tr(T a
T
b) =

l2(R)�ab. l2(R) is known as the quadratic index of the irrep R. Choosing the normalization of one

(typically the fundamental F) irrep fixes all the normalizations. Physicists usually assume l2(F) = 1/2,

while mathematicians prefer l2(F) = 1. In the appendix we choose l2(F) = 1 commenting, where

necessary, on how to revert to l2(F) = 1/2 to comply with the QFT literature. Having chosen the

invariant tensor �ab allows us not to distinguish between raised and lowered adjoint indices.

5We use the “physicist” convention and denote L by the corresponding group G = SU(n), SO(n) . . . .
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SU(4)

SO(4)
⇥

SU(2)2

SU(2)
(5.23)

� = 7.2, m0 = �0.794 (5.24)

� = 7.2, m0 = �0.79 (5.25)
� = 7.2, m0 = �0.77 (5.26)

f ⇢(n) � TeV h ⇢ H ⇢ G (5.27)

m⇢ ⇠ g⇢f 1 . g⇢ . 4⇡ (5.28)

G/H � h, W±

L
, ZL (5.29)

Lmix = �L,R L,RO + gV AµJµ (5.30)

µ2

h
⇠

gSM2

16⇡2
g2⇢f

2, �h ⇠
gSM2

16⇡2
g2⇢ (5.31)

v2 =
µ2

h

�h

(5.32)

m2

h
= 2�hv

2
'

Nc

⇡2
m2

t g
2

T (5.33)

mf ⇠ �L�Rv (5.34)
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dimOL,R�
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2

(5.35)

dim OL,R >
5

2
(5.36)

dim OL,R ⇠
5

2
(5.37)

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
associated with the modified GMOR relation at NLO can be determined independently from
the measurement of m̂2

PS
when a proper determination of mf is available. Note that not all

of LECs might be independent. For instance, the linear mass dependence of f̂2

PS
can fully

be determined from the measurements of f̂2

V
and f̂2

AV
.
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The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.
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We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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Strongly interacting dark matter

- UV realization of strongly interacting dark matter
Elastically Decoupling Relics (ELDERs)

Kuflik, Pelestein, Lorier, Tsai (2015)2

tors, or via a relatively light (0.01� 1 GeV) dark photon
with a kinetic mixing parameter ✏ ⇠ 10�8 [11].

THE ELASTICALLY DECOUPLING THERMAL
RELIC

The thermal history of the ELDER is summarized in
Fig. 1. At high temperatures, when � is relativistic, it
maintains thermal and chemical equilibrium with the SM
plasma. As the universe cools, the temperature drops
below the � mass, and the subsequent thermal history
is marked by two important events. First is “decou-
pling”, when the rate of elastic scattering becomes in-
su�cient to maintain the DM and SM sectors in ther-
mal contact. Second is “freeze-out”, at which point the
rate of self-annihilation becomes insu�cient to maintain
chemical equilibrium in the DM sector, and the comov-
ing dark matter density is frozen. Between these two
events, chemical equilibrium within the DM sector are
still maintained by self-annihilations, but the DM tem-
perature T

0 is no longer equal to the SM temperature T .
In this regime, the DM gas undergoes “cannibalization”:
3 ! 2 self-annihilations decrease the number density, but
at the same time inject kinetic energy into the remaining
gas. As the DM gas cannot exchange entropy with the
SM sector at this time, its comoving entropy density is
constant as the universe expands:

a
3
s
0
� = a

3m�n�

T 0 = constant

=) (T 0)1/2e�m�/T
0
/ T

3 (1)

where a / T
�1 is the FRW scale-factor. As a result, T 0

decreases much slower than T as the universe expands:

T
0 ⇡ Td

1 + 3x�1
d log Td/T

, (2)

where xd ⌘ m�/Td and Td is temperature at which (elas-
tic) decoupling occurs. The comoving DM number den-
sity, plotted in Fig. 1, changes very slowly during the
cannibalization regime.

Let T 0
f denote the DM temperature at freeze-out. Since

the comoving entropies of the DM and SM sectors are
separately conserved in the cannibalization epoch, the
DM number density at freeze-out is given by

n
0
f =

⇢
0
f

m�
=

s
0
fT

0
f

m�
=

s
0
d

x
0
f

sf

sd
, (3)

where x
0
f = m�/T

0
f , sd and s

0
d are the entropy densities

of the SM and DM sectors at decoupling, and sf and s
0
f

are the same quantities at freeze-out. The DM number
density today is

n0 =
s0

sf
n
0
f =

s
0
d

sd

s0

x
0
f

, (4)
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FIG. 1: Dark matter yield, as a function of the SM plasma
temperature T , for elastically decoupling dark matter with
m� = 10 MeV, ✏ = 8.5 ⇥ 10�9, and ↵ = 1 (purple/solid
line). For comparison, the dashed curves show the equilibrium
yield assuming the DM and SM plasmas are in equilibrium
(blue/dashed), and assuming the DM plasma is in chemical
equilibrium with itself after decoupling (red/dashed).

where s0 is the current entropy density. Since the dark
matter is non-relativistic at Td,

⌦� =
45

25/2⇡3/2

✓
m�s0

⇢c

◆ ✓
g�

g⇤d

◆
x
5/2
d e

�xd

x
0
f

, (5)

where ⇢c is the critical density (s0/⇢c ⇡ 0.60 eV�1), g� is
the number of degrees of freedom in the � field (e.g. 2 for
complex scalar and 4 for Dirac fermion), and g⇤d is the
e↵ective number of relativistic SM degrees of freedom at
decoupling. Hence, the relic abundance is exponentially
sensitive to the temperature at which the elastic scatter-
ing processes decouple.
In order to determine the temperatures at decoupling,

xd, and at freeze-out, x
0
f , we parametrize the elastic

scattering and self-annihilation cross-sections in the non-
relativistic limit as

lim
T!0

h�elvi ⌘
✏
2

m2
�

, lim
T!0

h�3!2v
2i ⌘ ↵

3

m5
�

, (6)

where �el is the cross-section of elastic scattering, aver-
aged over SM species that are relativistic at T ⇠ m�.
At T < m�, the equilibrium density of DM particles
drops exponentially as n

eq
� ⇠ (m�T )3/2e�m�/T . The

self-annihilation process which maintains chemical equi-
librium in the DM gas releases kinetic energy, at a per-
particle rate of

K̇� = m
ṅ

n

����
µ�=0

' �m
2
�HT

�1
. (7)

Elastic scattering processes transfer this excess kinetic
energy to the SM gas at a rate

K̇� ⇠ �elv
2
�T ⇠ T

5
✏
2
/m

3
�, (8)
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FIG. 1: Solid curves: The solution to the Boltzmann equation of the 3 ! 2 system, yielding the measured dark matter
relic abundance for the pions, m⇡/f⇡, as a function of the pion mass (left axis). Dashed curves: The self-scattering cross
section along the solution to the Boltzmann equation, �scatter/m⇡, as a function of pion mass (right axis). All curves are for
selected values of Nc and Nf , for an Sp(Nc) gauge group with a conserved (left panel) or broken (right panel) Sp(2Nf )
flavor symmetry. The solid horizontal line depicts the perturbative limit of m⇡/f⇡ ⇠< 2⇡, providing a rough upper limit on the
pion mass; the dashed horizontal line depicts the bullet-cluster and halo shape constraints on the self-scattering cross section,
Eq. (16), placing a rough lower limit on the pion mass. Each shaded region depicts the resulting approximate range for m⇡ for
the corresponding symmetry structure.

A comment is in order regarding higher-derivative cor-
rections. Throughout we have used the 4-point interac-
tion terms stemming from the mass and kinetic terms,
Eqs. (6) and (10). As is evident, the theory is pushed to
the strongly interacting regime where m⇡ is not far from
the e↵ective cuto↵, ⇤ = 2⇡f⇡; here higher-derivative
terms may induce O(1) e↵ects, shifting the lower bound
on the pion mass accordingly. The self-scattering cross
section of Eq. (17) is thus a proxy, which su�ces for the
purpose of obtaining a characteristic pion mass range.

Modifications to the presented canonical realization of
the SIMP mechanism are possible. For instance, it is
possible to write a mass term for the confining fermions
that explicitly breaks the flavor symmetry of Sp(2Nf ),
SU(Nf ) or SO(Nf ) in the class of Sp(Nc), SU(Nc) or
O(Nc) gauge theories. If one pion is lighter than the oth-
ers, this pion will be the dark matter. Since the WZW
term, Eq. (8), induces 3 ! 2 interactions between five
di↵erent flavors of pions, the decay of the other pions
to the lightest one must occur after freeze-out, and their
masses must be close. Considering the 4-pion interac-
tions, there are no self-interaction terms between pions
of the same flavor originating from the kinetic term. In
contrast, the fermion mass term of Eq. (11) does induce
same-flavor self-scattering for the lightest pion. The re-
sulting self-scattering cross section for the dark matter
state, �0

scatter, is suppressed numerically between a fac-
tor of a few to an order of magnitude, depending on the
gauge group, compared to the degenerate-pion case. Fur-

ther details are given in the Appendix. The rough lower
bound on the mass of the dark matter is then reduced
compared to the degenerate-pion scenario, expanding the
allowed dark matter mass window towards lower masses.

The results for an Sp(Nc) gauge group with a broken
flavor symmetry are depicted in the right panel of Fig. 1,
and the results for the SU(Nc) and O(Nc) gauge groups
are depicted in the right panel of Fig. 2 in the Appendix,
for various values of Nc and Nf . For instance, in the
simplest case of an Sp(2) ' SU(2) gauge group with 2
flavors, explicit breaking of the Sp(4) flavor symmetry
relaxes the self-scattering cross section constraint by an
order of magnitude, such that pion masses in the range
⇠ 70 � 300 MeV are allowed. Similarly, with a broken
flavor symmetry, the QCD-like case of an SU(3) gauge
group with 3 flavors is now viable and points to pion
masses of order m⇡ ⇠ 150� 350 MeV.

DISCUSSION

The two basic features of the SIMP setup — strong
3 ! 2 interactions within the dark sector and thermal
equilibrium between the dark and visible sectors — dic-
tate observable signals for this mechanism.

The strong interactions in the dark sector give an un-
avoidable contribution to a 2 ! 2 self-scattering cross
section amongst the pions, which is constrained à la
Eq. (16). The failure of N-body simulation to repro-

Hochberg, Kuflik, Murayama, Volansky, Wacker (2014)

2

to chiral symmetry breaking with the order parameter

hqiqji = µ
3
Jij , (2)

where µ is of mass dimension one and J = i�2 ⌦ Nf

is a 2Nf ⇥ 2Nf anti-symmetric matrix that preserves an
Sp(2Nf ) subgroup of the SU(2Nf ) flavor symmetry [5–8].
For Nf � 2, the topological condition is met,

⇡5(SU(2Nf )/Sp(2Nf )) = Z , Nf � 2 , (3)

and the WZW term is non-vanishing. The coset space
SU(2Nf )/Sp(2Nf ) is a symmetric space and is parame-
terized by N⇡ = 2N2

f �Nf�1 pion fields, ⇡a, correspond-
ing to the broken generators T a, with a = 1, . . . N⇡. The
pions furnish a rank-two anti-symmetric tensor represen-
tation of the unbroken Sp(2Nf ), and are stable. Assum-
ing the pions are the lightest states in the theory, dark
matter is comprised of these N⇡ pions.

A simple parametrization is found by performing a
transformation on the vacuum and promoting the trans-
formation parameters to fields,

hqqi = µ
3
J ! µ

3
V JV

T
⌘ µ

3⌃ , (4)

where V = exp(i⇡/f⇡) and f⇡ is the decay constant.
Since the broken generators obey ⇡J � J⇡

T = 0 with
⇡ = ⇡

a
T

a and Tr(T a
T

b) = 2�ab, we have

⌃ = exp(2i⇡/f⇡)J . (5)

A minimal realization of the 3 ! 2 mechanism is an
Sp(2) ' SU(2) gauge theory with Nf = 2 flavors. Dark
matter is comprised of 5 pions that transform as a 5-plet
under the preserved Sp(4) flavor symmetry. The coset
space of SU(4)/Sp(4) = SO(6)/SO(5) is then topolog-
ically an S

5. (See e.g. Refs. [9–20] for lattice work on
low-lying spectra in the minimal Sp(2) with quarks in the
fundamental representation, and Refs. [21–24] for dark-
matter examples.)

The relevant pion Lagrangian receives contributions
from several terms. The canonically normalized kinetic
term yields kinetic and 4-point interactions for the pions,

Lkin =
f
2
⇡

16
Tr @µ⌃ @

µ⌃† (6)

=
1

4
Tr @µ⇡@

µ
⇡

�
1

6f2
⇡

Tr
�
⇡
2
@
µ
⇡@µ⇡ � ⇡@

µ
⇡⇡@µ⇡

�
+O(⇡6

/f
4
⇡) ,

where in our normalization, Tr(⇡2) = 2⇡a
⇡
a. The Wess-

Zumino-Witten term [3, 4] yields 5-point pion interac-
tions. It can be written as an integral on the bound-
ary of a five-dimensional disk, identified with our four-
dimensional spacetime,

SWZW =
�iNc

240⇡2

Z
Tr (⌃†

d⌃)5 . (7)

To leading order in pion fields,

LWZW =
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�Tr [⇡@µ⇡@⌫⇡@⇢⇡@�⇡] , (8)

which is responsible for the required 3 ! 2 annihilation
process. Finally, an Sp(2Nf )-preserving mass term can
be written for the quarks:

Lmass = �
1

2
M

ij
qiqj + c.c., M

ij = mQ J
ij
. (9)

The pions are then pseudo-Goldstone bosons of the bro-
ken symmetry and acquire a mass, as well as contact
interactions:

�Le↵ = �
1

2
mQµ

3TrJ⌃+ c.c. (10)

= �
m

2
⇡

4
Tr⇡2 +

m
2
⇡

12f2
⇡

Tr⇡4 +O(⇡6
/f

4
⇡) ,

where

m
2
⇡ = 8

mQµ
3

f2
⇡

. (11)

Combining all the above we arrive at the relevant pion
Lagrangian,

L⇡ = Lkin +�Le↵ + LWZW (12)

=
1

4
Tr @µ⇡@

µ
⇡ �

m
2
⇡

4
Tr⇡2 +

m
2
⇡

12f2
⇡

Tr⇡4

�
1

6f2
⇡

Tr
�
⇡
2
@
µ
⇡@µ⇡ � ⇡@

µ
⇡⇡@µ⇡

�

+
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�Tr [⇡@µ⇡@⌫⇡@⇢⇡@�⇡] +O(⇡6) .

There can also be O(⇡4) terms with four derivatives
and higher. These contribute to four-pion self-scattering
with a naive-dimensional-analysis [25] suppression of at
least O(m2

⇡/⇤
2), where ⇤ = 2⇡f⇡, compared to those we

keep. The O(⇡5) terms with four derivatives that we use
are the leading 5-point pion interactions of the theory.
The same principle presented above to construct

strongly coupled models, that admit 3 ! 2 interac-
tions and realize the SIMP mechanism, is generalizable to
other gauge and flavor symmetries. For instance, one can
consider a generalized QCD-like theory with an SU(Nc)
gauge group and Nf Dirac-fermions in the fundamental
representation. The global flavor symmetry of the theory
is SU(Nf )⇥SU(Nf ), which upon chiral symmetry break-
ing preserves an SU(Nf ) subgroup. Similarly, an O(Nc)
gauge group with Nf fermions in the vector representa-
tion exhibits an SU(Nf ) flavor symmetry, which breaks
to SO(Nf ) once chiral symmetry breaking occurs. The
topological condition on the coset space in each of these
cases,

⇡5(SU(Nf )) = Z , Nf � 3 ,

⇡5(SU(Nf )/SO(Nf )) = Z , Nf � 3 , (13)
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Strongly interacting dark matter

- UV realization of strongly interacting dark matter
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FIG. 1: Hidden sector particle production and decay at electron and proton fixed-target experiments. Dark photons (A0)
are produced via Bremsstrahlung in an electron- or proton-nucleus collision and decay promptly into a pair of hidden sector
pions (⇡D), as shown in the top diagram, or a pion and vector meson (VD) of the hidden sector, as shown in the bottom
diagrams. At proton beam experiments, dark photons are also produced through Standard Model meson decays and Drell-
Yan (not shown). The vector meson is long-lived, decaying into Standard Model leptons (through mixing with the A0) after
traversing a macroscopic distance from the target (bottom-left). Similar processes can also occur for non-singlet vector mesons
which undergo a three-body decay (through an o↵-shell A0) into a hidden sector pion and a pair of Standard Model leptons
(bottom-right). The inset shows a schematic hidden sector mass spectrum, with mA0/2 & mVD ⇠ m⇡D , which enables these
decays.

A related process is the decay of the dark photon into
vector mesons whose quantum numbers do not permit
mixing with the dark photon, as shown in the bottom-
right diagram of Fig. 1. These vector mesons decay to
⇡D`

+
`
� final states with even longer lifetimes.

These distinctive signatures can be searched for at
beam dump and fixed-target experiments. Such searches
are complementary to the minimal signals of HS DM, e.g.,
nuclear/electron recoils and invisible dark photon decays,
the latter of which is shown in the top diagram of Fig. 1.
Data from the E137 beam dump experiment is already
able to probe interesting regions of parameter space, es-
pecially for ⇠ 100 meter decay lengths. Complementary
viable regions will be tested in the near future at the
currently running Heavy Photon Search (HPS) experi-
ment, an upgrade of the SeaQuest experiment, and at
the proposed Light Dark Matter eXperiment (LDMX).
Our main results are summarized in Fig. 5, where we
show existing constraints as well as sensitivity of HPS,
SeaQuest, and LDMX to cosmologically-motivated mod-
els that have not been tested otherwise. Similar signals
are also observable above the muon threshold at the B-
factories BaBar and Belle-II and at the Large Hadron
Collider (LHC).

This paper is organized as follows. In Sec. II, we de-
scribe a benchmark model of a strongly interacting HS
that we use throughout this work. We also show that
HS vector mesons are long-lived for well-motivated pa-
rameter values and, therefore, can give rise to displaced
vertex signals at fixed-target and collider experiments.
In Sec. III, we discuss the cosmological importance of
these vector mesons and clarify the issue of pion stabil-
ity. We then demonstrate in Sec. IV that existing and

future fixed-target, collider, and direct detection experi-
ments are sensitive to cosmologically-motivated parame-
ter space. We also briefly comment on various astrophys-
ical and cosmological probes. Finally, we summarize our
conclusions in Sec. V. Details of the model, cross-sections
and decay rates, and Boltzmann equations are provided
in Appendices A–C.

II. A STRONGLY INTERACTING SECTOR

We consider a strongly interacting HS described by a
confining SU(Nc) gauge theory with Nc = 3 colors, anal-
ogous to SM QCD. We also introduce Nf light flavors of
Dirac fermions in the fundamental representation. We
are interested in the relative importance of 3⇡D ! 2⇡D

and ⇡D⇡D ! ⇡DVD in dictating the DM abundance. We
choose Nf = 3, as this is the minimum number of flavors
that is required to allow either process. In this section,
we briefly outline the basics of the model, while a more
detailed discussion is provided in Appendix A. Hereafter,
we denote the HS pions and vector mesons as ⇡ and V , re-
spectively (a subscript “D” is implied). For ⇡ and V , the
superscripts, 0 and ±, denote charges under U(1)D, while
for `, they denote charges under U(1)em. The global chi-
ral symmetry, SU(Nf )L ⇥ SU(Nf )R, is spontaneously
broken by the hidden quark condensate to the diagonal
subgroup, SU(Nf )V , during confinement. Thus, at low
energies this is a theory of N

2

f �1 pions, ⇡, which consti-
tute the DM of the universe. The low-energy pion self-
interactions are described by chiral perturbation theory;
the strength of these interactions is characterized by the
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are produced via Bremsstrahlung in an electron- or proton-nucleus collision and decay promptly into a pair of hidden sector
pions (⇡D), as shown in the top diagram, or a pion and vector meson (VD) of the hidden sector, as shown in the bottom
diagrams. At proton beam experiments, dark photons are also produced through Standard Model meson decays and Drell-
Yan (not shown). The vector meson is long-lived, decaying into Standard Model leptons (through mixing with the A0) after
traversing a macroscopic distance from the target (bottom-left). Similar processes can also occur for non-singlet vector mesons
which undergo a three-body decay (through an o↵-shell A0) into a hidden sector pion and a pair of Standard Model leptons
(bottom-right). The inset shows a schematic hidden sector mass spectrum, with mA0/2 & mVD ⇠ m⇡D , which enables these
decays.

A related process is the decay of the dark photon into
vector mesons whose quantum numbers do not permit
mixing with the dark photon, as shown in the bottom-
right diagram of Fig. 1. These vector mesons decay to
⇡D`

+
`
� final states with even longer lifetimes.

These distinctive signatures can be searched for at
beam dump and fixed-target experiments. Such searches
are complementary to the minimal signals of HS DM, e.g.,
nuclear/electron recoils and invisible dark photon decays,
the latter of which is shown in the top diagram of Fig. 1.
Data from the E137 beam dump experiment is already
able to probe interesting regions of parameter space, es-
pecially for ⇠ 100 meter decay lengths. Complementary
viable regions will be tested in the near future at the
currently running Heavy Photon Search (HPS) experi-
ment, an upgrade of the SeaQuest experiment, and at
the proposed Light Dark Matter eXperiment (LDMX).
Our main results are summarized in Fig. 5, where we
show existing constraints as well as sensitivity of HPS,
SeaQuest, and LDMX to cosmologically-motivated mod-
els that have not been tested otherwise. Similar signals
are also observable above the muon threshold at the B-
factories BaBar and Belle-II and at the Large Hadron
Collider (LHC).

This paper is organized as follows. In Sec. II, we de-
scribe a benchmark model of a strongly interacting HS
that we use throughout this work. We also show that
HS vector mesons are long-lived for well-motivated pa-
rameter values and, therefore, can give rise to displaced
vertex signals at fixed-target and collider experiments.
In Sec. III, we discuss the cosmological importance of
these vector mesons and clarify the issue of pion stabil-
ity. We then demonstrate in Sec. IV that existing and

future fixed-target, collider, and direct detection experi-
ments are sensitive to cosmologically-motivated parame-
ter space. We also briefly comment on various astrophys-
ical and cosmological probes. Finally, we summarize our
conclusions in Sec. V. Details of the model, cross-sections
and decay rates, and Boltzmann equations are provided
in Appendices A–C.

II. A STRONGLY INTERACTING SECTOR

We consider a strongly interacting HS described by a
confining SU(Nc) gauge theory with Nc = 3 colors, anal-
ogous to SM QCD. We also introduce Nf light flavors of
Dirac fermions in the fundamental representation. We
are interested in the relative importance of 3⇡D ! 2⇡D

and ⇡D⇡D ! ⇡DVD in dictating the DM abundance. We
choose Nf = 3, as this is the minimum number of flavors
that is required to allow either process. In this section,
we briefly outline the basics of the model, while a more
detailed discussion is provided in Appendix A. Hereafter,
we denote the HS pions and vector mesons as ⇡ and V , re-
spectively (a subscript “D” is implied). For ⇡ and V , the
superscripts, 0 and ±, denote charges under U(1)D, while
for `, they denote charges under U(1)em. The global chi-
ral symmetry, SU(Nf )L ⇥ SU(Nf )R, is spontaneously
broken by the hidden quark condensate to the diagonal
subgroup, SU(Nf )V , during confinement. Thus, at low
energies this is a theory of N

2

f �1 pions, ⇡, which consti-
tute the DM of the universe. The low-energy pion self-
interactions are described by chiral perturbation theory;
the strength of these interactions is characterized by the
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Beyond the SIMPlest scenario, vector 
meson plays a crucial role to extend 
the viable parameter range producing 
the correct relic density without 
violating Bullet cluster bound.
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.

FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and

Choi, Lee, Ko & Natale (2018)

D
AS

U
AS  j Qj j = 1, 2, (2.2)

� = 8/g2 (2.3)

m⇡ ⇠
mV

3
,
mV

2
, or even heavier. (2.4)

 ̂a↵b
⌘

⇣
 
a
�
↵
 
b
⌘

(2.5)

Uµ(x) 2 Sp(4) & j = 1, 2, 3 (2.6)

� = 7.62, 7.7, 7.85, 8.0, 8.2 (2.7)

f̂PS m̂PS m̂V(T) m̂AV,AT,S (2.8)

p
[dim(R)]

mV

fPS
⇠ constant (2.9)

h0|Oav|psi = h0| 1�5�µ 2|psi ⌘ fps pµ,

h0|Ov|vi = h0| 1�µ 2|vi ⌘ fv mv ✏µ,

h0|Oav|avi = h0| 1�5�µ 2|avi ⌘ fav mav ✏µ, (2.10)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this
respect we choose the bare coupling � = 6.8 (well inside the weak coupling regime) for the
dedicated study of finite volume effects.

In Table 1 we present the ensemble details used for the measurements of the Euclidean
meson two-point correlation functions. In the table, we report the average plaquette values
in addition to the number of configurations Nconfigs and the difference between adjacent
trajectories �traj which removes the potential systematic effects due to autocorrelation.
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Lattice action and simulation details

- Lattice formulation with the standard Wilson gauge & fermion actions

- HiRep code with appropriate modifications (e.g. resymplectisation)

- Heat-bath for quenched ensembles & HMC(RHMC) for dynamical ensembles

- Scale setting - Luscher’s gradient flow method (hatted notation) J
H
E
P
1
2
(
2
0
1
9
)
0
5
3

We consider two different proposals for defining the gradient flow scale, and denote

them by t0 [95] and w0 [97]. We first define the dimensionless observables at positive flow

time t as

E(t) ≡ t2⟨E(t)⟩, (3.3)

and

W(t) ≡ d

d lnt
t2⟨E(t)⟩. (3.4)

Then the scales are set by imposing the conditions

E|t=t0 ≡ E0, (3.5)

and

W|t=w2
0
≡ W0. (3.6)

Here E0 and W0 are common, dimensionless reference values. In numerical studies, we

measure the dimensionless quantities t0/a2 and w0/a, which determine the relative size of

the lattice spacing between ensembles obtained by using different (bare) lattice parame-

ters. In this project, consistently with our previous work [60], we employ the Wilson-flow

method [95] to proceed with the lattice implementation of eq. (3.1).

In our previous publication [60], we performed detailed numerical studies of the GF

scheme for the quenched theory, as well as full dynamical calculations for β = 6.9. We

found that w0 shows smaller cut-off-dependent effects, compared to t0. In particular, no

significant deviation was found between the values of w0 obtained by using the action

density at non-zero flow time E(t) constructed from the average plaquette and from the

symmetric four-plaquette clover, as defined in [95].

In this study, we consider a finer lattice with β = 7.2. The results are presented in

figure 1. We find that while the values of t0 show significant discrepancies, the measured

values of w0 from the two definitions of E(t) are in good agreement over the wide range

of W0 and m0 we considered, in particular for W0 = 0.3 ∼ 0.4. The agreement in the flow

scales has improved with respect to the results from coarser lattices in [60]. In table 1, and

in subsequent calculations, we elect to use the gradient flow scale w0, which we compute

with the reference value of W0 = 0.35, on the four-plaquette clover action density — for

which smaller lattice artefacts are observed. For convenience, we introduce the following

notation: m̂ ≡ mlatwlat
0 = mw0 denotes the dimensionless quantity corresponding to a

mass. We use â ≡ a/w0 when we discuss lattice-spacing artefacts in section 4.2.

3.2 Chiral perturbation theory for gradient flow observables

Figure 1 shows that the scales
√
8t0/a and w0/a depend on the fermion mass am0. The

title of this subsection is borrowed from ref. [84], to reflect the fact that we employ the

EFT treatment suggested in this reference and we apply it to our numerical results. The

EFT treatment assumes that the square root of the flow scale t0 is much smaller than the

Compton wavelength of the pseudoscalar meson.

Following [84], we use the leading order (LO) relation in the chiral expansion m2
PS =

2Bmf (where mf is the fermion mass), to write the next-to-leading-order (NLO) result for
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Figure 1: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at
� = 6.4, 6.5 and 6.6 from left to right, respectively. The red and blue symbols denote the
expectation values of the plaquette hP i obtained from random (hot) and unit (cold) initial
configurations on a 84 lattice.
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� = 7.62, 7.7, 7.85, 8.0, 8.2 (2.3)

f̂PS m̂PS m̂V(T) m̂AV,AT,S (2.4)

p
[dim(R)]

mV

fPS
⇠ constant (2.5)

h0|Oav|psi = h0| 1�5�µ 2|psi ⌘ fps pµ,

h0|Ov|vi = h0| 1�µ 2|vi ⌘ fv mv ✏µ,

h0|Oav|avi = h0| 1�5�µ 2|avi ⌘ fav mav ✏µ, (2.6)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this
respect we choose the bare coupling � = 6.8 (well inside the weak coupling regime) for the
dedicated study of finite volume effects.

– 2 –

Contents

1 Introduction 1

2 Lattice model 1

3 (Bare) parameter space 2

4 Meson spectroscopy 3

4.1 Observables 3
4.2 Finite volume correction 4
4.3 Mass dependence and Discretisation effects 9
4.4 Quenching effects 9

5 Discussion 9

A Finite volume correction in the chiral perturbation theory 11

1 Introduction

Vµ ! UVµU
†
, (1.1)

 i ab =

 
 
i ab

⌦ac⌦bd(�C̃ 
i+3 ⇤)cd

!
,  i ab

C =

 
 
i+3 ab

⌦ac⌦bd(�C̃ 
i ⇤)cd

!
, (1.2)

C̃ = �i⌧
2 (1.3)

6= 0 (1.4)

Out of 35 generators t
B of SU(6), broken ones obey ! t

B
� t

B
! = 0, B = 1, · · · , 20,

while unbroken ones obey ! t
B + t

B
! = 0, B = 21, · · · , 35.

2 Lattice model

S ⌘ �

X

x

X

µ<⌫

✓
1�

1

4
ReTrUµ(x)U⌫(x+ µ̂)U †

µ(x+ ⌫̂)U †
⌫ (x)

◆
+ a

4
X

x

Qj(x)D
F
Qj(x),

(2.1)

D
F
Qj(x) ⌘ (4/a+m0)Q(x)�

1

2a

X

µ

n
(1� �µ)U

F
µ (x)Qj(x+ µ̂) + +(1 + �µ)U

F
µ (x� µ̂)Qj(x� µ̂)

o
,

– 1 –

Contents

1 Introduction 1

2 Lattice model 1

3 (Bare) parameter space 2

4 Meson spectroscopy 3

4.1 Observables 3
4.2 Finite volume correction 4
4.3 Mass dependence and Discretisation effects 9
4.4 Quenching effects 9

5 Discussion 9

A Finite volume correction in the chiral perturbation theory 11

1 Introduction

Vµ ! UVµU
†
, (1.1)

 i ab =

 
 
i ab

⌦ac⌦bd(�C̃ 
i+3 ⇤)cd

!
,  i ab

C =

 
 
i+3 ab

⌦ac⌦bd(�C̃ 
i ⇤)cd

!
, (1.2)

C̃ = �i⌧
2 (1.3)

6= 0 (1.4)

Out of 35 generators t
B of SU(6), broken ones obey ! t

B
� t

B
! = 0, B = 1, · · · , 20,

while unbroken ones obey ! t
B + t

B
! = 0, B = 21, · · · , 35.

2 Lattice model

S ⌘ �

X

x

X

µ<⌫

✓
1�

1

4
ReTrUµ(x)U⌫(x+ µ̂)U †

µ(x+ ⌫̂)U †
⌫ (x)

◆
+ a

4
X

x

Qj(x)D
F
Qj(x),

(2.1)

D
F
Qj(x) ⌘ (4/a+m0)Q(x)�

1

2a

X

µ

n
(1� �µ)U

F
µ (x)Qj(x+ µ̂) + +(1 + �µ)U

F
µ (x� µ̂)Qj(x� µ̂)

o
,

– 1 –

-1.18 -1.16 -1.14 -1.12 -1.10

0.50

0.52

0.54

0.56

0.58

a m0

<
P>

-1.11 -1.10 -1.09 -1.08 -1.07

0.50

0.52

0.54

0.56

0.58

a m0

<
P>

-1.08 -1.06 -1.04 -1.02 -1.00

0.50

0.52

0.54

0.56

0.58

a m0

<
P>

Figure 1: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at
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expectation values of the plaquette hP i obtained from random (hot) and unit (cold) initial
configurations on a 84 lattice.
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See how the susceptibility of        scales with the size of the system.

Existence of Strong Hysteresis of        obtained from cold and hot configurations.

crossover1st order

1st order

crossover

where the lattice coupling is given by � = 8/g
2. The pineering lattice studies of Sp(2N)

Yang-Mills showed that a bulk phase transition is absent in the Sp(4) theory, implying that
one can in principle take the continuum limit by choosing any values of � [75].

We define the fermion sector by using the (unimproved) Wilson action for two mass-
degenerate Dirac fermions in the fundamental representation
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where a is the lattice spacing and am0 is the bare mass in lattice units. In the case of
dynamical simulations with two Wilson-Dirac fermions, in contrast to the pure Sp(4) case,
we found a first-order bulk phase transition from our preliminary study on the mass scan of
average plaquette values hP i = 1

4

P
x

P
µ<⌫

trPµ⌫(x) [55]. By investigating the hysterises
in the trajectories of hP i started from cold (unit) and hot (random) configurations at
small lattice volume and the volume dependence of the plaquette susceptibilities, we have
determined the lower bound of the weak coupling regime, � & 6.8, where the continuum
extrapolation can be carried out safely. In this weak coupling regime the Wilson fermion
mass can be lowered smoothly before we touch the possible unphysical Aoki phase near the
massless limit [76]. For all ensembles considered in this work no sign of the Aoki phase has
been seen as we are presumably far from the massless limit.

2.2 Numerical setup

Using the lattice action in Eq. 2.1 we simulate the Sp(4) theory with two Dirac fermions in
the fundamental representation, where gauge configurations are generated by the standard
hybrid Monte Carlo (HMC) algorithm. In Ref. [55] we extensively discussed the numerical
techniques, such as the resymplecticization, necessary to simulate our mode by modifying
the Hirep code [77]. Since then, we have further improved the code in which we could
simulate an arbitrary number of N � 2 and reduce the size of a gauge configuration by
factor of two, where the details are presented in Appendix A.1.

The ensembles for dynamical simulations are summarized in Table 1. In the table we
present the values of lattice coupling � and bare fermion mass am0: the former are chosen
to be in the weak coupling regime ranged over 6.9 � 7.5, while the latter are chosen to be
light enough for which the low-energy effective theories are applicable. We consider the four
dimensional Euclidean lattice Nt⇥N

3
s with periodic boundary conditions in all directions for

gauge field, where Nt and Ns are the extents of temporal and spatial lattices, respectively.
The physical volume V = T ⇥ L

3 is restored by taking T = Nta and L = Nsa. For the
Dirac field, on the other hand, we implement periodic and anti-periodic boundary conditions
for spatial and temporal directions, respectively. All lattice volumes satisfy the condition
mPSL & 7.5, where amPS denotes the mass of pseudoscalar meson in lattice units extracted
from the two-point correlation functions as will be discussed in Section 4. This guarantees
that the volumes are large enough that the finite-size effects are under control, where a
related discussion is given in the follwing section. In the table we also present the results
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Figure 2. Difference between the averaged plaquette obtained at various values of β in this work
and in ref. [1]. The symbols ⟨P ⟩ and ⟨P ⟩H.P.W. denote the measurements from this work and those
reported in ref. [1], respectively. Our lattice volume is V = 84, and both calculations use the HB
algorithm with over-relaxation, as explained in section 3.2. Each point has been obtained from
5000 measurements, and the errors are corrected for autocorrelations.

• SU(2)τ subgroup, with generators expressed in terms of B.4 in [34]:

τ1 = T 11 ; τ2 = T 7 ; τ3 = T 15 . (3.5)

• SU(2)τ̃ subgroup, with generators expressed in terms of B.4 in [34]:

τ̃1 = T 13 ; τ̃2 = T 8 ; τ̃3 = T 14 . (3.6)

The set of 10 generators T i
L, T

i
R, τ

1 , 2 and τ̃1 , 2 spans the whole Sp(4). The minimal set

of 5 elements that generate the whole group by closure consists for example of any two

elements T i
L, any two elements T j

R and one additional element among τ1 , 2 and τ̃1 , 2.

As a check of correctness of the algorithm we employed, we compared the average of

the elementary plaquette to the results obtained in [1], as shown in figure 2, confirming

that they are compatible within the statistical errors.

3.3 Hybrid Monte Carlo

In the study of Nf = 2 dynamical Dirac fermions, we make use of the hybrid Monte Carlo

(HMC) algorithm. As Sp(4) is a subgroup of SU(4), most of the numerical techniques

used for SU(N) with an even number of fermions can straightforwardly be extended to our

study. However, there are two distinguishing features.

First of all, in contrast to the HB algorithm, the explicit form of the group generators

of Sp(4) is necessary for the molecular dynamics (MD) update. For instance, the MD

forces for the gauge fields are given by

FA
G (x, µ) = − β

2NTF
Re Tr[iTAUµ(x)V

†
µ (x)], (3.7)
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Figure 19. Plaquette susceptibilities χ, measured in HMC calculations with dynamical quarks,
for β = 6.6 (top panel) and β = 6.8 (bottom panel), as a function of the bare mass am0, for three
values of the lattice size (see legend).

Figure 20. Trajectories of plaquette values for dynamical-fermion calculations at β = 6.9. Different
colours represent various fermion masses, as reported in the legend.
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Figure 19. Plaquette susceptibilities χ, measured in HMC calculations with dynamical quarks,
for β = 6.6 (top panel) and β = 6.8 (bottom panel), as a function of the bare mass am0, for three
values of the lattice size (see legend).

Figure 20. Trajectories of plaquette values for dynamical-fermion calculations at β = 6.9. Different
colours represent various fermion masses, as reported in the legend.
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Figure 6: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at b = 6.4, 6.5 and
6.6 from left to right, respectively. The red and blue symbols denote the expectation values of the plaquette
hPi obtained from random (hot) and unit (cold) initial configurations on a 84 lattice.

non-zero (symmetric) condensate. Pseudo NG bosons correspond to 2N
2
f
+Nf � 1 broken gen-

erators which belongs to the coset SU(2Nf )/SO(2Nf ). In terms of Dirac flavors, the NG bosons
are N

2
f
� 1 mesons in the adjoint representation, and Nf (Nf + 1)/2 diquarks and anti-diquarks in

the symmetric representation. As in the case with fundamental fermions, we focus on the spec-
trum of flavored PS, V, and AV mesons which are degenerate with the corresponding diquark and
anti-diquark states transformed in the same way under the global symmetry in the massless limit.
As dynamical ensembles are not available yet, we calculate the masses and decay constants in the
quenched limit from the same ensembles used for the fundamental fermions in [5]. The results for
b = 8.0 are shown as red symbols in Fig. 5. For a comparison we also present the results for the
quenched spectrum with fundamental fermions denoted by blue symbols. The masses and decay
constants for both representations show similar dependence on the PS meson mass, but the overall
scale is substantially different.

Toward the dynamical simulation with anti-symmetric fermions, the primary task is to search
for any singularity associated with the bulk-phase transition by exploring the bare lattice parameter
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- We should stay in the weak coupling regime to be safely connected to continuum.

D
AS

U
AS  j Qj j = 1, 2, (2.2)

� = 8/g2 (2.3)

m⇡ ⇠
mV

3
,
mV

2
, or even heavier. (2.4)

 ̂a↵b
⌘

⇣
 
a
�
↵
 
b
⌘

(2.5)

Uµ(x) 2 Sp(4) & j = 1, 2, 3 (2.6)

� >
⇠ 6.6 (2.7)

�m̂2
V
/mm̂2

V
⇠ 10% (2.8)

� = 7.62, 7.7, 7.85, 8.0, 8.2 (2.9)

f̂PS m̂PS m̂V(T) m̂AV,AT,S (2.10)

p
[dim(R)]

mV

fPS
⇠ constant (2.11)

h0|Oav|psi = h0| 1�5�µ 2|psi ⌘ fps pµ,

h0|Ov|vi = h0| 1�µ 2|vi ⌘ fv mv ✏µ,

h0|Oav|avi = h0| 1�5�µ 2|avi ⌘ fav mav ✏µ, (2.12)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this
respect we choose the bare coupling � = 6.8 (well inside the weak coupling regime) for the
dedicated study of finite volume effects.

In Table 1 we present the ensemble details used for the measurements of the Euclidean
meson two-point correlation functions. In the table, we report the average plaquette values
in addition to the number of configurations Nconfigs and the difference between adjacent
trajectories �traj which removes the potential systematic effects due to autocorrelation.
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strong coupling

strong coupling

weak coupling

weak coupling



Label Interpolating operator Meson JP Sp(4) SO(6)

M OM in QCD
PS Qi�5Qj ⇡ 0� 5(+1) 1

S QiQj a0 0+ 5(+1) 1

V Qi�µQj ⇢ 1� 10 1

T Qi�0�µQj ⇢ 1� 10(+5 + 1) 1

AV Qi�5�µQj a1 1+ 5(+1) 1

AT Qi�5�0�µQj b1 1+ 10(+5 + 1) 1

ps  k�5 m ⇡ 0� 1 200(+1)

s  k m a0 0+ 1 200(+1)

v  k�µ m ⇢ 1� 1 15

t  k�0�µ m ⇢ 1� 1 15(+200 + 1)

av  k�5�µ m a1 1+ 1 200(+1)

at  k�5�0�µ m b1 1+ 1 15(+200 + 1)

Table 3. Interpolating operators OM built of Dirac fermions on the fundamental Qi a and
antisymmetric  k ab. We show explicitly the flavour indices i, j = 1 , 2 and k, m = 1 , 2 , 3, while
colour and spinor indices are implicit and summed over. We also show the JP quantum numbers, the
corresponding QCD mesons sourced by the analogous operator, and the irreducible representation of
the unbroken global Sp(4)⇥SO(6) spanned by the meson (see also [44]). We indicate in parenthesis
other non-trivial representations that are obtained with the same operator structure, but that we
do not study in this paper as they source heavier states. The singlets (1 of both Sp(4) and SO(6))
are ignored, as we choose to analyse only the operators with i 6= j or k 6= m. More details about
the symmetries can be found in Appendix E, and the details of a specific choice of basis for the
global SU(4) are presetned in Appendix F.

4 Of quenched mesons

In this section, we present the main numerical results of our study. We start by defining the
mesonic 2-point correlation functions that are computed numerically, and the observables
we extract from them, namely the meson masses and decay constants. We provide some
technical details about the otherwise standard procedure we follow, in order to clarify how
different representations of the gauge group are implemented. Perturbative renormalisation
of the decay constants is summarised towards the end of Sec. 4.1. We perform continuum
extrapolations with the use of Wilson chiral perturbation theory (W�PT) in Sec. 4.2. We
devote Secs. 4.3 and 4.4 to present the numerical results for the mesons made of fermions
transforming in the fundamental and 2-index antisymmetric representations, respectively,
and conclude with a comparison of the two representations in Sec. 4.5. For practical rea-
sons, in this section we specify our results to the theory with Nf = 2 fermions on the
fundamental representation and nf = 3 on the antisymmetric, though the results of the
quenched calculations apply for generic Nf and nf .
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Observables: spin-0 & 1lightest mesons

where the dimesionful LECs are normalized by w0 and part of them absorb the coefficient
2B̂ = 2Bw0 of the LO relation for m̂

2

PS

f̂ = fw0, F̂ = Fw0, ŷ3 =
y3

2B̂w0

, ŷ4 =
y4

2B̂w0

, v̂1 =
v1w0

2B̂
, v̂2 =

v2w0

2B̂
. (5.6)

m̂
2

V =
g
2

V
(bf̂2 + F̂

2)

4(1 + )
+

2v̂1( + 1) � ŷ3(bf̂2 + F̂
2)

4( + 1)2
g
2

Vm̂
2

PS + O(m̂4

⇡), (5.7)

m
2

V =
1

4(1 +  + my3)
g
2

V (bf2 + F
2 + 2mv1) (5.8)

m
2

AV =
1

4(1 �  � my4)
g
2

V (bf2 + F
2 + 2mv1) (5.9)

+
g
2

V

1 �  � my4

�
f
2 + m(v2 � v1)

�
(5.10)

f
2

V =
1

2

�
bf

2 + F
2 + 2mv1

�
(5.11)

f
2

AV =

�
bf

2
� F

2 + 2m(v1 � v2)
�2

2 ((b + 4)f2 + F 2 � 2mv1 + 4mv2)
(5.12)

f
2

PS = F
2 + (b + 2c)f2

� f
2

V � f
2

AV (5.13)

m
2

PSf
2

PS = m(v3 + mv
2

5) (5.14)

m̂
2

PS ⌧ 0.67 (5.15)

SU(2) ⇠ Sp(2) (5.16)

fPS ⇠

p
Nc (5.17)

hSi 6= 0 (5.18)

⇢ (5.19)

SU(4)/Sp(4) ⇥ SU(6)/SO(6) (5.20)

⇠ SO(6)/SO(5) (5.21)

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
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- Global symmetry breaking: 

- Gauge invariant, flavor non-singlet, i.e.                            

Label Interpolating operator Meson JP Sp(4) SO(6)

M OM in QCD
PS Qi�5Qj ⇡ 0� 5(+1) 1

S QiQj a0 0+ 5(+1) 1

V Qi�µQj ⇢ 1� 10 1

T Qi�0�µQj ⇢ 1� 10(+5 + 1) 1

AV Qi�5�µQj a1 1+ 5(+1) 1

AT Qi�5�0�µQj b1 1+ 10(+5 + 1) 1

ps  k�5 m ⇡ 0� 1 200(+1)

s  k m a0 0+ 1 200(+1)

v  k�µ m ⇢ 1� 1 15

t  k�0�µ m ⇢ 1� 1 15(+200 + 1)

av  k�5�µ m a1 1+ 1 200(+1)

at  k�5�0�µ m b1 1+ 1 15(+200 + 1)

Table 3. Interpolating operators OM built of Dirac fermions on the fundamental Qi a and
antisymmetric  k ab. We show explicitly the flavour indices i, j = 1 , 2 and k, m = 1 , 2 , 3, while
colour and spinor indices are implicit and summed over. We also show the JP quantum numbers, the
corresponding QCD mesons sourced by the analogous operator, and the irreducible representation of
the unbroken global Sp(4)⇥SO(6) spanned by the meson (see also [44]). We indicate in parenthesis
other non-trivial representations that are obtained with the same operator structure, but that we
do not study in this paper as they source heavier states. The singlets (1 of both Sp(4) and SO(6))
are ignored, as we choose to analyse only the operators with i 6= j or k 6= m. More details about
the symmetries can be found in Appendix E, and the details of a specific choice of basis for the
global SU(4) are presetned in Appendix F.

4 Of quenched mesons

In this section, we present the main numerical results of our study. We start by defining the
mesonic 2-point correlation functions that are computed numerically, and the observables
we extract from them, namely the meson masses and decay constants. We provide some
technical details about the otherwise standard procedure we follow, in order to clarify how
different representations of the gauge group are implemented. Perturbative renormalisation
of the decay constants is summarised towards the end of Sec. 4.1. We perform continuum
extrapolations with the use of Wilson chiral perturbation theory (W�PT) in Sec. 4.2. We
devote Secs. 4.3 and 4.4 to present the numerical results for the mesons made of fermions
transforming in the fundamental and 2-index antisymmetric representations, respectively,
and conclude with a comparison of the two representations in Sec. 4.5. For practical rea-
sons, in this section we specify our results to the theory with Nf = 2 fermions on the
fundamental representation and nf = 3 on the antisymmetric, though the results of the
quenched calculations apply for generic Nf and nf .

– 13 –
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Figure 20. Example of effective mass plots of low-lying spin-0 and spin-1 mesons. The data is
taken from the DB3M7 ensemble (see list in table 1), which is characterised by the lattice parameters
β = 7.2 and am0 = −0.794. The individual fits that yield the masses of the PS, V, S and AV states
are restricted to include only the plateau regions, which are highlighted by the shaded bands. The
width of each band represents for the statistical uncertainty.
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Label (M) Interpolating operator (OM ) Meson JP Sp(4)

PS Qiγ5Qj π 0− 5

S QiQj a0 0+ 5

V QiγµQj ρ 1− 10

T Qiγ0γµQj ρ 1− 10(+5)

AV Qiγ5γµQj a1 1+ 5

AT Qiγ5γ0γµQj b1 1+ 10(+5)

Table 5. Interpolating operators OM sourcing the lightest mesons in the six channels considered in
the main text. To avoid mixing with the flavour singlets, we restrict to i ̸= j the flavour indices of the
Dirac fermions, while colour and spinor indices are summed and omitted. For completeness, we also
show the JP quantum numbers and the corresponding particle in the QCD classification of mesons.
Notice that two of the operators source the same particles (ρmeson) because of the breaking of chiral
symmetry. In the last column we report the irreducible representation of the unbroken global Sp(4)
spanned by the meson (see also [43]). In brackets are irreducible representations of Sp(4) that are
sourced by operators with the same Lorentz structure, but that we do not discuss in this context.

where i, j = 1, 2 are the flavour indices, and ΓM refer to the Dirac structures summarised

in table 5. Summations over spinor and colour indices are understood.

The lightest spin-0 and spin-1 mesons, denoted by PS, V and AV for pseudoscalar, vec-

tor and axial-vector mesons, respectively, appear in the low-energy EFT described in [60].

In section 6 we will use their masses and decay constants to test the EFT and to extrapo-

late towards the chiral limit. We also consider additional interpolating operators with the

Dirac structures 1, γ0γµ, γ5γ0γµ, referred to as scalar S, (antisymmetric) tensor T, and

axial tensor AT, though from the related correlation functions we only extract the meson

masses. We restrict our attention to the flavoured mesons (by choosing i ̸= j in flavour

space) — the analogous mesons in QCD are π, ρ, a1, a0, and b1. As the global symmetry

is broken, the states created by the interpolating operators denoted by V and T mix, with

the low-lying state corresponding to the ρ meson in QCD (see [101] and references therein,

as well as figure 1 of both refs. [102] and [103]).

For all the meson interpolating operators OM listed in table 5, we define the zero-

momentum Euclidean two-point correlation functions at positive Euclidean time t as

COM (t) ≡
∑

x⃗

⟨0|OM (x⃗, t)O†
M (⃗0, 0)|0⟩. (4.2)

In the numerical study, the resulting mesonic two-point correlation functions are studied

by replacing the point-like sources in eq. (4.1) with Z2 × Z2 single time slice stochastic

sources [104], with number of hits 3.

Because of the pseudoreal nature of the representation of the symplectic gauge group,

diquark operators are indistinguishable from the mesonic operators. We report in table 5

also the multiplicity of each state (the size of the irreducible representation of Sp(4)).

For instance, five pNGBs form a multiplet of the unbroken Sp(4), in the SU(4) → Sp(4)

enhanced symmetry pattern of the gauge theory considered here. Compared with what
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happens with gauge group SU(N), these five pNGBs include the three associated with the

breaking SU(2)L × SU(2)R → SU(2)V , together with two diquarks.3 In appendix A.2 we

explicitly show the equivalence of meson and diquark correlators by using the lattice action

in eq. (2.4).

At large Euclidean time t the correlation functions in eq. (4.2) are dominated by the

lowest excitation at zero spatial momentum so that the mass mM appears in the asymptotic

expression:

COM (t)
t→∞−−−→ ⟨0|OM |M⟩⟨0|OM |M⟩∗ 1

2mM

[
e−mM t + e−mM (T−t)

]
, (4.3)

where T is the temporal extent of the lattice. The decay constants fM are determined from

the matrix elements, which are parameterised as

⟨0|Q1γ5γµQ2|PS⟩ = fPSpµ ,

⟨0|Q1γµQ2|V⟩ = fVmVϵµ ,

⟨0|Q1γ5γµQ2|AV⟩ = fAVmAVϵµ . (4.4)

The polarisation vector ϵµ is transverse to the momentum pµ and normalised by ϵ∗µϵ
µ = 1.

The meson states |M⟩ are conventionally defined by the self-adjoint isospin fields, as in

M = MATA, where TA are the generators of the group. We adopt conventions such that

in QCD the analogous experimental value of the pion (pseudoscalar) decay constant is

fπ ≃ 93MeV. In eq. (4.4), the pseudoscalar decay constant fPS is defined via the local

axial current. To calculate the decay constant fPS, we introduce an additional two-point

correlation function

CΠ(t) =
∑

x⃗

⟨0|[Q1γ5γµQ2(x⃗, t)] [Q1γ5Q2(⃗0, 0)]|0⟩

t→∞−−−→ fPS⟨0|OPS|PS⟩∗

2

[
e−mPSt − e−mPS(T−t)

]
, (4.5)

where ⟨0|OPS|PS⟩∗ can be obtained from COPS(t) in eq. (4.3). In practice, we calculate

mPS and fPS by performing a simultaneous fit to the numerical data for COPS(t) and CΠ(t).

The details of the fit of the meson correlators, including the effective masses and best-fit

ranges, are provided in appendix A.3.

The matrix elements in eq. (4.4), calculated from the lattice at finite lattice spacing a,

must be converted to those renormalised in the continuum. For Wilson fermions the decay

constants in the continuum are determined from lattice ones via

fPS = ZAf
bare
PS , fV = ZVf

bare
V , and fAV = ZAf

bare
AV , (4.6)

where ZV and ZA are the renormalisation factors for vector and axial-vector currents which

are expected to approach unity in the continuum. Since the pseudoscalar decay constant

3The full expressions of spin-0 and spin-1 meson operators in the bases of both four-component Dirac

and two-component Weyl spinors will be presented in a separate publication [83]. See also the analysis in

ref. [105].
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Figure 1: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at
� = 6.4, 6.5 and 6.6 from left to right, respectively. The red and blue symbols denote the
expectation values of the plaquette hP i obtained from random (hot) and unit (cold) initial
configurations on a 84 lattice.

Uµ(x) 2 Sp(4) & j = 1, 2, 3 (2.2)

� = 7.62, 7.7, 7.85, 8.0, 8.2 (2.3)

f̂PS m̂PS m̂V(T) m̂AV,AT,S (2.4)

p
[dim(R)]

mV

fPS
⇠ constant (2.5)

h0|Oav|psi = h0| 1�5�µ 2|psi ⌘ fps pµ,

h0|Ov|vi = h0| 1�µ 2|vi ⌘ fv mv ✏µ,

h0|Oav|avi = h0| 1�5�µ 2|avi ⌘ fav mav ✏µ, (2.6)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this
respect we choose the bare coupling � = 6.8 (well inside the weak coupling regime) for the
dedicated study of finite volume effects.
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loops causes significant systematic effects due to short-range lattice artefacts, as can be
seen in the plots (see also the discussion in [20, 24], in the case of QCD), we exclude these
Wilson loops for the determination of ⇠g. In summary, we calculate the asymptotic value of
⇠g using planar and nonplanar Wilson loops, except the ones having y = 1, at min(r⇤y) = 6

and the results are reported in Table 3.

3.4 Fermion anisotropy

The fermion anisotropy ⇠f is determined through the leading-order relativistic dispersion
relation of mesons

E2
(p2) = m2

+
p2

⇠2
f

, ~p = 2⇡~n/Ns, (3.11)

where Ns is the spacial lattice size. The energy E and the mass m are in units of at,
while the momentum ~p is in units of as. In the Euclidean formulation, meson two-point
correlation functions exponentially fall off with the lowest energy at an aymptotically large
time. In practice, it is useful to define an effective mass,

meff(t) = cosh
�1

✓
C(t+ 1) + C(t� 1)

2C(t)

◆
, (3.12)

where C(t) is the ensemble average of meson correlators. Then, ground state energies are
obtained from a constant fit to the plateau of meff in the asymptotic region of large t. In the
case of zero momentum these energies are nothing but the meson masses. The measured
masses of pseudoscalar and vector mesons are reported in Table 3.

As an example, in Fig. 4 we show the effective mass plots for pseudoscalar and vector
mesons with m0 = 0.2, ⇠0g = ⇠0g = 4.7 and � = 2.0. We construct the meson interpolating
operators at source and sink using point sources. Various momentum projections with
|~n| = 0, 1, 2, 3 are denoted by red, green, yellow and brown colors, respectively, while the
measured ground state energies are denoted by the blue bands.

In Fig. 5 we plot the resulting squared energy E2 as a function of |~n|2 and find a good
linearity, consistent with Eq. (3.11). In the determination of ⇠f , to minimize the systematic
effects due to excited state contamination at higher momenta, we only use the lowest four
momentum vectors ~n = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) in the linear fit of E2

(|~n|2) to
Eq. (3.11). As seen in the figures, the fit results denoted by blue bands explain the data
very well. The extracted value of ⇠f = 6.41(11) from a pseudoscalar meson is in good
agreement with the one from a vector meson, ⇠f = 6.36(14), and shows better precision.
Therefore, for the tuning of lattice bare parameters we use ⇠f from pseudoscalar mesons
which are summarized in Table 3.

3.5 Tuning results

To determine the coefficients, ai, bi, and ci, we perform the simultaneous �2 fit of the
numerical data in Table 3 to the functions in Eq. (3.7). The results are

a0 = 0.6(16), a1 = 0.97(13), a2 = 0.31(23), a3 = 2(4),

b0 = 1.8(24), b1 = 0.06(18), b2 = 1.1(3), b3 = 4(7),

c0 = 0.475(5), c1 = �0.0168(4), c2 = �0.0375(6), c3 = 0.986(11), (3.13)
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Figure 20: Example of effective mass plots of low-lying spin-0 and spin-1 mesons. The
data is taken from the DB3M7 ensemble (see list in Table 1), which is characterised by the
lattice parameters � = 7.2 and am0 = �0.794. The individual fits that yield the masses
of the PS, V, S and AV states are restricted to include only the plateau regions, which
are highlighted by the shaded bands. The width of each band represents for the statistical
uncertainty.

the band) and the best fitting ranges (length of the band). For the PS meson, we perform
a simultaneous fit of the two-point functions of PS and AV operators in Eq. (4.3) and
Eq. (4.5).

We notice that while the effective masses retained in the fit extend to the maximum
length of the temporal directions Tmax for PS and V mesons, those for AV and S mesons
typically cease at t < Tmax due to severe numerical noise problems, which in practical terms
reduce the fitting ranges. As a result, we expect a comparatively large systematic error
associated with the choice of the fitting range for AV and S states (analogous arguments
apply to the AT states).

B Low-energy constants and global fit

In this Appendix, we present the numerical results for the LECs in Eqs. (6.1)-(6.5) obtained
from the simplified global fit to the data discussed in Section 6.1. As anticipated, we find it
instructive to explicitly show the histograms associated with the LEC distributions. Figs.
21 and 22 report the histograms for the LECs appearing in the EFT at the leading and
the next-to-the-leading order, respectively. As seen in the figures, some fit parameters do
not exhibit gaussian distributions, but rather expose long, flat tails. The samples in the
tail do not lead to big upwards fluctuations of the value of �

2
/Nd.o.f , suggesting that there

are some local minima in the parameter space with �
2 close to the global minimum, or
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Figure 5. Volume dependence of the pseudoscalar masses, as in table 4. Lattice parameters are
(β, m0) = (7.2, −0.77) in the left panel and (7.2, −0.79) in the right panel. The (blue) dashed and
(black) solid lines denote the fit results and the extrapolated values in the infinite volume limit,
respectively.

in the spectroscopic measurements reported in the following sections — if we require that

mPS L ! 7.5. In the rest of this work we restrict attention to ensembles that satisfy this

requirement — see table 6.

The gradient flow scale also receives a correction from the finite size of the lattice

volume. The flow along the fictitious time t can be understood as a smearing procedure

with scale
√
8t, hence FV effects are controlled by the dimensionless ratio cτ =

√
8t/L. At

the reference value of E0 = 0.35 we find that cτ does not exceed 0.2 in most ensembles.

Using the results in ref. [100] we estimate the size of FV corrections to eq. (3.4) to be at

most at a few per-mille level. The only exception are the ensembles with β = 7.2 on a

36× 163 lattice and the one with β = 7.5. These ensembles do not play an important role

in the analyses that follow, because of the large physical masses associated with them.

4 Meson spectroscopy and decay constants

In this section we summarise the main results of our lattice study, by focusing on the

properties (masses and decay constants) of the mesons in the dynamical theory. We start

in section 4.1 by defining the operators we are interested in, the correlation functions we

measure, and the renormalisation procedure we apply. We then present all the main spec-

troscopy results in section 4.2, and discuss the continuum limit extrapolation in section 4.3.

Useful supplementary details are relegated to appendix A.2 and A.3.

4.1 Two-point correlation functions

Following established procedure, we extract the masses and the decay constants of flavoured

mesons by studying the behaviour of the relevant two-point correlation functions at large

Euclidean time t. The interpolating operators which carry the same quantum numbers

with the desired meson states take the generic form

OM (x) ≡ Qi(x)ΓMQj(x), (4.1)
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Systematics 1: Finite volume effects

- Finite volume effects are exponentially suppressed, which can be understood 
from the low-energy chiral perturbation theory. 

Figure 7: Vector meson mass in units of pseudoscalar decay constant in Sp(4) theory with
fundamental matter. The sharp and opaque colors are for the Nf = 3 dynamical and the
Nf = 0 quenched fermions, respectively. In the legend, QFund and DFund denote for the
results with quenched and dynamical fundamental fermions, respectively.
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A Finite volume correction in the chiral perturbation theory

The finite volume correction to the pseudoscalar mass can be understood in the framework
of chiral perturbation theory (�PT). We start with the infinite volume version of continuum
�PT, where the next-to-leading order (NLO) results are sufficient to our discussion. The
pseudoscalar mass at NLO is

m
2
PS = M

2

✓
1 + aM

A(M)

F 2
+ bM (µ)

M
2

F 2
+O(M4)

◆
, (A.1)

where M is the leading order (LO) pseudoscalar mass, i.e. M
2 = 2B0mq, and the function
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Figure 7: Vector meson mass in units of pseudoscalar decay constant in Sp(4) theory with
fundamental matter. The sharp and opaque colors are for the Nf = 3 dynamical and the
Nf = 0 quenched fermions, respectively. In the legend, QFund and DFund denote for the
results with quenched and dynamical fundamental fermions, respectively.
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Here AFV denotes the finite volume correction whose asymptotic form is [5]
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As discussed in details in Ref. [3], the coefficients are different depending on the sym-
metry breaking pattern, while the rest of the functional form in Eq. (A.3) remains same.
In the case of SU(2Nf ) ! SO(2Nf ) relevant to our work, the coefficient aM is given as

aM =
1

2
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1

2Nf
. (A.5)

In the other two cases, the coefficients are

aM = �
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Nf
, for SU(Nf )⇥ SU(Nf ) ! SU(Nf ),
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1
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1

Nf
, for SU(2Nf ) ! Sp(2Nf ). (A.6)

By comparing those coefficients, we immediately notice that Eq. (A.5) has different sign
with Eq. (A.6) if Nf is greater than or equal to unity. As we already saw in Ref. [4], the
finite volume correction enhances the masses of pseudoscalar and vetor mesons in the case
of Sp(4) with fundamental flavors. Therefore, the results shown in Fig. 4 are consistent
with the �PT prediction in which now the finite volume correction lower the masses.
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Bijnens & Lu (2009)

Nf=2 fund. Sp(4)

Nf=3 anti-sym. Sp(4)

Figure 2: Effective mass plot for pseudoscalar, vector, axial vector and scalar mesons
measured from 54⇥ 243 lattice. The lattice parameters used for the calculation are � = 6.8

and m0 = �1.03.

Nt ⇥N
3
s amPCAC amPS afPS mPS L fPSL m

inf
PS L

54⇥ 83 0.05462(33) 0.2312(30) 0.1105(22) 1.850(24) 0.884(18) 3.221(7)
54⇥ 123 0.05766(25) 0.3098(37) 0.0608(18) 3.717(44) 0.729(22) 4.832(10)
54⇥ 163 0.05863(13) 0.3717(26) 0.0557(12) 5.948(41) 0.891(19) 6.443(13)
54⇥ 183 0.05935(13) 0.3996(15) 0.0619(7) 7.192(28) 1.115(13) 7.262(15)
54⇥ 203 0.05979(12) 0.4040(12) 0.0636(7) 8.081(24) 1.271(14) 8.054(16)
54⇥ 243 0.05960(8) 0.4027(8) 0.06340(51) 9.664(20) 1.521(12) 9.664(20)

Table 3: Numerical results for the masses and decay constants of pseudoscalar meson
used to estimate the finite volume effects. We also present the fermion mass obtained
via the partially conserved axial current. The bare parameters used for the generation of
configuration are � = 6.8 and am0 = �1.03. The pseudoscalar mass at the infinite volume
m

inf
PS is estimated by taking the one measured at the largest volume of 54⇥ 243.

• The finite volume corrections lower the pseudoscalar mass, which is opposite to what
we have seen in the case of Nf = 2 Dirac fundamental flavors. Such a behavior has
bothered me for a while, but it turns out that this result can be understood from the
(infinite volume) chiral perturbation theory as discussed in Appendix A. (Thanks,
David!)

• Similar behavior of the finite volume effects is found in SU(2) gauge theory with an
adjoint Dirac fermions as seen in Fig. 3. (Thanks, Ed!)

• The plateau in the effective mass plot appears at relatively large Euclidean time.

– 4 –

Figure 11. Decay constants in the continuum limit after subtracting lattice artefacts due to a
finite lattice spacing. The global fit results are denoted by blue solid bands whose widths indicate
the statistical errors.

SU(4)

SO(4)
⇥

SU(2)2

SU(2)
(5.23)

� = 7.2, m0 = �0.794 (5.24)

� = 7.2, m0 = �0.79 (5.25)
� = 7.2, m0 = �0.77 (5.26)

Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
associated with the modified GMOR relation at NLO can be determined independently from
the measurement of m̂

2

PS
when a proper determination of mf is available. Note that not all

of LECs might be independent. For instance, the linear mass dependence of f̂
2

PS
can fully

be determined from the measurements of f̂
2

V
and f̂

2

AV
.

In order to perform a global fit using the functions in Eq. 5.5 we first prepare the meson
masses and decay constants in the continuum limit by subtracting the discretization effects
W

0

m,M
â and W

0

f,M
â from the original data. We restrict ourselves to the data set considered
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where the lattice coupling is given by � = 8/g
2. The pineering lattice studies of Sp(2N)

Yang-Mills showed that a bulk phase transition is absent in the Sp(4) theory, implying that
one can in principle take the continuum limit by choosing any values of � [75].

We define the fermion sector by using the (unimproved) Wilson action for two mass-
degenerate Dirac fermions in the fundamental representation

Sf = a
3
X

x

 ̄(x) (4 + am0) (x)

�
1

2
a
3
X

x,µ

 ̄(x)
⇣
(1 � �µ)Uµ(x) (x + µ̂) + (1 + �µ)U †

µ(x � µ̂) (x � µ̂)
⌘

, (2.4)

where a is the lattice spacing and am0 is the bare mass in lattice units. In the case of
dynamical simulations with two Wilson-Dirac fermions, in contrast to the pure Sp(4) case,
we found a first-order bulk phase transition from our preliminary study on the mass scan of
average plaquette values hP i = 1

4

P
x

P
µ<⌫

trPµ⌫(x) [55]. By investigating the hysterises
in the trajectories of hP i started from cold (unit) and hot (random) configurations at
small lattice volume and the volume dependence of the plaquette susceptibilities, we have
determined the lower bound of the weak coupling regime, � & 6.8, where the continuum
extrapolation can be carried out safely. In this weak coupling regime the Wilson fermion
mass can be lowered smoothly before we touch the possible unphysical Aoki phase near the
massless limit [76]. For all ensembles considered in this work no sign of the Aoki phase has
been seen as we are presumably far from the massless limit.

2.2 Numerical setup

Using the lattice action in Eq. 2.1 we simulate the Sp(4) theory with two Dirac fermions in
the fundamental representation, where gauge configurations are generated by the standard
hybrid Monte Carlo (HMC) algorithm. In Ref. [55] we extensively discussed the numerical
techniques, such as the resymplecticization, necessary to simulate our mode by modifying
the Hirep code [77]. Since then, we have further improved the code in which we could
simulate an arbitrary number of N � 2 and reduce the size of a gauge configuration by
factor of two, where the details are presented in Appendix A.1.

The ensembles for dynamical simulations are summarized in Table 1. In the table we
present the values of lattice coupling � and bare fermion mass am0: the former are chosen
to be in the weak coupling regime ranged over 6.9 � 7.5, while the latter are chosen to be
light enough for which the low-energy effective theories are applicable. We consider the four
dimensional Euclidean lattice Nt⇥N

3
s with periodic boundary conditions in all directions for

gauge field, where Nt and Ns are the extents of temporal and spatial lattices, respectively.
The physical volume V = T ⇥ L

3 is restored by taking T = Nta and L = Nsa. For the
Dirac field, on the other hand, we implement periodic and anti-periodic boundary conditions
for spatial and temporal directions, respectively. All lattice volumes satisfy the condition
mPSL & 7.5, where amPS denotes the mass of pseudoscalar meson in lattice units extracted
from the two-point correlation functions as will be discussed in Section 4. This guarantees
that the volumes are large enough that the finite-size effects are under control, where a
related discussion is given in the follwing section. In the table we also present the results
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where the lattice coupling is given by � = 8/g
2. The pineering lattice studies of Sp(2N)

Yang-Mills showed that a bulk phase transition is absent in the Sp(4) theory, implying that
one can in principle take the continuum limit by choosing any values of � [75].
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Sf = a
3
X

x

 ̄(x) (4 + am0) (x)

�
1

2
a
3
X

x,µ

 ̄(x)
⇣
(1 � �µ)Uµ(x) (x + µ̂) + (1 + �µ)U †

µ(x � µ̂) (x � µ̂)
⌘

, (2.4)

where a is the lattice spacing and am0 is the bare mass in lattice units. In the case of
dynamical simulations with two Wilson-Dirac fermions, in contrast to the pure Sp(4) case,
we found a first-order bulk phase transition from our preliminary study on the mass scan of
average plaquette values hP i = 1

4

P
x

P
µ<⌫

trPµ⌫(x) [55]. By investigating the hysterises
in the trajectories of hP i started from cold (unit) and hot (random) configurations at
small lattice volume and the volume dependence of the plaquette susceptibilities, we have
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extrapolation can be carried out safely. In this weak coupling regime the Wilson fermion
mass can be lowered smoothly before we touch the possible unphysical Aoki phase near the
massless limit [76]. For all ensembles considered in this work no sign of the Aoki phase has
been seen as we are presumably far from the massless limit.

2.2 Numerical setup

Using the lattice action in Eq. 2.1 we simulate the Sp(4) theory with two Dirac fermions in
the fundamental representation, where gauge configurations are generated by the standard
hybrid Monte Carlo (HMC) algorithm. In Ref. [55] we extensively discussed the numerical
techniques, such as the resymplecticization, necessary to simulate our mode by modifying
the Hirep code [77]. Since then, we have further improved the code in which we could
simulate an arbitrary number of N � 2 and reduce the size of a gauge configuration by
factor of two, where the details are presented in Appendix A.1.

The ensembles for dynamical simulations are summarized in Table 1. In the table we
present the values of lattice coupling � and bare fermion mass am0: the former are chosen
to be in the weak coupling regime ranged over 6.9 � 7.5, while the latter are chosen to be
light enough for which the low-energy effective theories are applicable. We consider the four
dimensional Euclidean lattice Nt⇥N

3
s with periodic boundary conditions in all directions for

gauge field, where Nt and Ns are the extents of temporal and spatial lattices, respectively.
The physical volume V = T ⇥ L

3 is restored by taking T = Nta and L = Nsa. For the
Dirac field, on the other hand, we implement periodic and anti-periodic boundary conditions
for spatial and temporal directions, respectively. All lattice volumes satisfy the condition
mPSL & 7.5, where amPS denotes the mass of pseudoscalar meson in lattice units extracted
from the two-point correlation functions as will be discussed in Section 4. This guarantees
that the volumes are large enough that the finite-size effects are under control, where a
related discussion is given in the follwing section. In the table we also present the results
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Systematics 2: Discretization effects

13

In this work we determine the renormalisation factors via one-loop perturbative matching, and for Wilson fermions
the relevant matching coe�cients are written as [94]

ZA(V) = 1 + C(R)(�⌃1 + ��)
g̃2

16⇡2
, (39)

where � = �5�µ for ZA and � = �µ for ZV. The eigenvalues of the quadratic Casimir operators with fermions in the
fundamental and antisymmetric representations of Sp(4) are C(F ) = 5/4 and C(AS) = 2, respectively. The matching
factors in Eq. (39) are computed by one-loop integrals within the continuum MS (modified minimal subtraction)
regulalisation scheme. The resulting numerical values are �⌃1 = �12.82, ��µ = �7.75 and ��5�µ = �3.0 [62, 94].
Following the prescription in Ref. [95], in order to improve the convergence of perturbative expansion we replace the
bare coupling g by the tadpole improved coupling defined as g̃2 = g2/hP i. hP i is the average plaquette value, and
this procedure removes large tadpole-induced additive renormalisation arising with Wilson fermions.

B. Continuum extrapolation

Extrapolations to the continuum limit are carried out following the same procedure as in Ref. [67]. We borrow the
ideas of tree-level Wilson chiral perturbation theory (W�PT), which we truncate at the next-to-leading order (NLO)
in the double expansion in fermion mass and lattice spacing [96, 97] (see also Ref. [98], as well as [99, 100], though
written in the context of improvement). Tree-level results for the full theory can be extended to (partially) quenched
calculations, since quenching e↵ects only arise from integrals in fermion loops [97]. But we cannot a priori determine
the range of validity of tree-level W�PT at NLO. On the one hand, if we were too close to the chiral limit, we would
need to include loop integrals (the well-known chiral logs). On the other hand, if we were in the heavy mass regime,
then we would need to include more higher order terms. As we will discuss later, most our data sit somewhere in
between these two extrema, and as a consequence we can empirically find appropriate ranges of fermion mass over
which tree-level NLO W�PT well describes the numerical data.

We apply the scale-setting procedure discussed in Section III B, and define the lattice spacing in units of the
gradient-flow scale as â ⌘ a/w0. All other dimensional quantities are treated accordingly, so that masses are rescaled
as in m̂M ⌘ w0mM and decay constants as in f̂M = w0fM . Tree-level NLO W�PT assumes that the decay constant
squared f̂2,NLO

PS
is linearly dependent on both m̂2

PS
and â. We extend this assumption to all other observables as well,

hence defining the ansatz

f̂2,NLO

M
⌘ f̂2,�

M

�
1 + L0

f,M
m̂2

PS

�
+ W 0

f,M
â , (40)

m̂2,NLO

M
⌘ m̂2,�

M

�
1 + L0

m,M
m̂2

PS

�
+ W 0

m,M
â , (41)

for decay constants squared and masses squared, respectively. We note that the fermion mass mf appearing in the
standard W�PT has been replaced by the pseudoscalar mass squared by using LO �PT results, according to which
m̂2

PS
= 2Bmf . The low-energy constant B could in principle be determined via a dedicated study of the fermion

mass, but this would go beyond our current aims. The empirical prescription we adopt requires to identify the largest
possible region of lattice data showing evidence of the linear behaviour described above, and then fit the data in order
to identify the additive contribution proportional to â. Extrapolation to the continuum is obtained by subtracting
this contribution from the lattice measurements.

C. Quenched spectrum: fundamental fermions

Reference [62] reported the quenched spectrum of the lightest PS, V, and AV flavoured mesons for two values of the
lattice coupling, � = 7.62 and 8.0, with fermions in the fundamental representation. In this section, we extend the
exploration of the quenched theory in several directions. First, we consider three more values of the coupling, � = 7.7,
7.85, and 8.2, as mentioned in Section IIIA, aiming to perform continuum extrapolations, along the lines described
in Sec. IV B. Second, in order to remove potential finite-volume e↵ects, we restrict the bare fermion mass m0 to
ensembles that satisfy the condition mPSL � 7.5, in line with the results of the study with dynamical fermions [67].
Only part of the data in [62] meets this restriction, over the range of m0 2 [�0.7, �0.79] at � = 7.62, measured on
the lattice with extension 48 ⇥ 243—corresponding to the ensemble denoted as QB1 in Table II. For the other values
of the lattice coupling we perform new calculations by using lattices with extension 60 ⇥ 483. The details of all the
ensembles are found in Section III A and summarised in Table II.
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coupling, while keeping the lattice spacing in units of w0 fixed), while in this simplified

discussion we kept the lattice coupling β = 7.2 fixed. This is adequate for the purposes of

this subsection, but we refer the reader to section 6.1 for an assessment of the validity of

the GMOR relation in the continuum limit.

In figure 7 we show the numerical results of the decay constants squared of PS, V and

AV mesons, while in figures 8 and 9 we present the masses squared of mesons sourced by

the operators V and T, and by S, AV, and AT, respectively, as functions of m̂2
PS. Our

first observation is that discretisation effects in f̂2
PS and m̂2

V (or m̂2
T) are significant, given

the visible difference between data collected at different lattice couplings (and denoted by

different colours). For other quantities the deviations are no larger than the statistical

uncertainties. Also, the masses and the decay constants decrease as we approach the

massless limit, with the exception of f̂2
AV. Overall, the masses and decay constants show

linear dependence on m̂2
PS in a wide range inside the small-mass region.

4.3 Continuum extrapolation

We are now in a position to perform the continuum extrapolation, and to eliminate discreti-

sation artefacts in the meson masses and decay constants. In order to do so, we introduce

the important tool of WχPT [86, 87] (see also ref. [88], and [89, 90]). It extends the con-

tinuum effective field theory by a double expansion, both in small fermion mass m, as well

as lattice spacing a, as both of them break chiral symmetry and can be introduced in the

EFT as spurions. We denote the lattice spacing in units of w0 by

â ≡ a/w0 = 1/wlat
0 . (4.9)

This yields the natural size of discretisation effects, consistently with the fact that we

measure all other dimensional quantities in units of w0.

At NLO in WχPT [87], the tree-level expression for the pseudoscalar decay constant

leads to

f̂NLO
PS = f̂χ

(
1 + b̂χf m̂

2
PS

)
+ Ŵχ

f â, (4.10)

where f̂χ = fχwχ
0 is the pseudoscalar decay constant in the massless and continuum limit.

The fermion masses used in this study are comparatively large, and hence it is legitimate

to omit from eq. (4.10) the chiral logs, which are important for small values of m̂PS. The

coefficients b̂χf and Ŵχ
f control the size of corrections due to finite mass and finite lattice

spacing, respectively. In principle one should measure all observables in units of wχ
0 , while

we instead use the mass-dependent w0, as measured at the finite mass of the individual

ensembles, hence avoiding the need to extrapolate to the massless limit [85] — we collected

enough data to attempt such extrapolation only for two values of β. The replacement of

wχ
0 by w0 does not affect the NLO EFT, the difference appearing at higher orders in m2

PS.

Compared to the continuum NLO expression in ref. [109], it results in a shift b̂χf by k̃1 in

eq. (3.8), due to fitting the measurements of fPSw0.

Among the underlying assumptions of WχPT is the requirement that the measure-

ments it describes satisfy
m2

PS

Λ2
χ

∼ aΛχ < 1, (4.11)
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In this work we determine the renormalisation factors via one-loop perturbative matching, and for Wilson fermions
the relevant matching coe�cients are written as [94]

ZA(V) = 1 + C(R)(�⌃1 + ��)
g̃2

16⇡2
, (39)

where � = �5�µ for ZA and � = �µ for ZV. The eigenvalues of the quadratic Casimir operators with fermions in the
fundamental and antisymmetric representations of Sp(4) are C(F ) = 5/4 and C(AS) = 2, respectively. The matching
factors in Eq. (39) are computed by one-loop integrals within the continuum MS (modified minimal subtraction)
regulalisation scheme. The resulting numerical values are �⌃1 = �12.82, ��µ = �7.75 and ��5�µ = �3.0 [62, 94].
Following the prescription in Ref. [95], in order to improve the convergence of perturbative expansion we replace the
bare coupling g by the tadpole improved coupling defined as g̃2 = g2/hP i. hP i is the average plaquette value, and
this procedure removes large tadpole-induced additive renormalisation arising with Wilson fermions.

B. Continuum extrapolation

Extrapolations to the continuum limit are carried out following the same procedure as in Ref. [67]. We borrow the
ideas of tree-level Wilson chiral perturbation theory (W�PT), which we truncate at the next-to-leading order (NLO)
in the double expansion in fermion mass and lattice spacing [96, 97] (see also Ref. [98], as well as [99, 100], though
written in the context of improvement). Tree-level results for the full theory can be extended to (partially) quenched
calculations, since quenching e↵ects only arise from integrals in fermion loops [97]. But we cannot a priori determine
the range of validity of tree-level W�PT at NLO. On the one hand, if we were too close to the chiral limit, we would
need to include loop integrals (the well-known chiral logs). On the other hand, if we were in the heavy mass regime,
then we would need to include more higher order terms. As we will discuss later, most our data sit somewhere in
between these two extrema, and as a consequence we can empirically find appropriate ranges of fermion mass over
which tree-level NLO W�PT well describes the numerical data.

We apply the scale-setting procedure discussed in Section III B, and define the lattice spacing in units of the
gradient-flow scale as â ⌘ a/w0. All other dimensional quantities are treated accordingly, so that masses are rescaled
as in m̂M ⌘ w0mM and decay constants as in f̂M = w0fM . Tree-level NLO W�PT assumes that the decay constant
squared f̂2,NLO

PS
is linearly dependent on both m̂2

PS
and â. We extend this assumption to all other observables as well,

hence defining the ansatz

f̂2,NLO

M
⌘ f̂2,�

M

�
1 + L0

f,M
m̂2

PS

�
+ W 0

f,M
â , (40)

m̂2,NLO

M
⌘ m̂2,�

M

�
1 + L0

m,M
m̂2

PS

�
+ W 0

m,M
â , (41)

for decay constants squared and masses squared, respectively. We note that the fermion mass mf appearing in the
standard W�PT has been replaced by the pseudoscalar mass squared by using LO �PT results, according to which
m̂2

PS
= 2Bmf . The low-energy constant B could in principle be determined via a dedicated study of the fermion

mass, but this would go beyond our current aims. The empirical prescription we adopt requires to identify the largest
possible region of lattice data showing evidence of the linear behaviour described above, and then fit the data in order
to identify the additive contribution proportional to â. Extrapolation to the continuum is obtained by subtracting
this contribution from the lattice measurements.

C. Quenched spectrum: fundamental fermions

Reference [62] reported the quenched spectrum of the lightest PS, V, and AV flavoured mesons for two values of the
lattice coupling, � = 7.62 and 8.0, with fermions in the fundamental representation. In this section, we extend the
exploration of the quenched theory in several directions. First, we consider three more values of the coupling, � = 7.7,
7.85, and 8.2, as mentioned in Section IIIA, aiming to perform continuum extrapolations, along the lines described
in Sec. IV B. Second, in order to remove potential finite-volume e↵ects, we restrict the bare fermion mass m0 to
ensembles that satisfy the condition mPSL � 7.5, in line with the results of the study with dynamical fermions [67].
Only part of the data in [62] meets this restriction, over the range of m0 2 [�0.7, �0.79] at � = 7.62, measured on
the lattice with extension 48 ⇥ 243—corresponding to the ensemble denoted as QB1 in Table II. For the other values
of the lattice coupling we perform new calculations by using lattices with extension 60 ⇥ 483. The details of all the
ensembles are found in Section III A and summarised in Table II.
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Figure 7. Decay constant squared for pseudoscalar (PS, top), vector (V, middle) and axial-vector
(AV, bottom) mesons as a function of the pseudoscalar mass squared m̂2

PS. Different colours refer
to different lattice couplings as shown in the legends. The error bars represent the size of statistical
uncertainties. (See appendix A.3 for the details.)
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(AV, bottom) mesons as a function of the pseudoscalar mass squared m̂2

PS. Different colours refer
to different lattice couplings as shown in the legends. The error bars represent the size of statistical
uncertainties. (See appendix A.3 for the details.)
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- Lattice results of Sp(4) gauge theories with 2 fund. Dirac flavors.



Systematics 3: Quenching effects
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Figure 19. Meson decay constants squared from quenched (blue) and dynamical (red) calculations,
in the continuum limit obtained by considering all the ensembles with m̂2

PS ! 0.6 for f̂2
V and f̂2

AV,
but restricting to m̂2

PS ! 0.4 for f̂2
PS, as in section 4.3. The coloured bands illustrate the fit of the

measurements used in the massless extrapolations, with the width of the bands representing the
statistical error in the fit.

C2. The global fit based on the EFT describing PS, V and AV states using hidden local

symmetry yields the results in table 10, illustrated in figures 12 and 13.

C3. Section 6.1 discusses the GMOR relation and three sum rules in the continuum limit.

The main results are shown in figures 14 and 15.

C4. In section 7 the continuum limit results are discussed in units of the decay constant

fPS of the PS states, that are summarised in table 11, and illustrated in figure 16. We

include also the mass of the scalar flavoured state S. All our measurements are in the

range 1.39 ! m̂V/m̂PS ! 1.87, in which the V states cannot decay to states containing

two PS particles. (Analogous considerations apply to the 3-body decay of the AV

mesons.) This range may be of direct relevance in the context of dark matter models.

C5. We perform the extrapolation to the massless limit. The masses of V, AV, and

S states are mV/fPS = 8.08(32), mAV/fPS = 13.4(1.5), and mS/fPS = 14.2(1.7).

The decay constants of V and AV states in the continuum and massless limit are

fV/fPS = 2.15(8) and fAV/fPS = 2.3(4), respectively — see table 11.

C6. We find that fV/fPS = 2.15(8) is larger than expected on the basis of the first KSRF

relation, which would yield fV =
√
2 fPS — see section 7.
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Figure 18. Meson masses squared from quenched (blue) and dynamical (red) calculations, in the
continuum limit obtained by considering all the ensembles with m̂2

PS ! 0.6, as in section 4.3. The
coloured bands illustrate the fit of the measurements used in the massless extrapolations, with the
width of the bands representing the statistical error in the fit.

the discrepancies to be δf̂2
PS
/f̂2

PS ∼ 20% and δm̂2
S
/m̂2

S ∼ 25%, in the massless limit. The

mass of the V meson shows a somewhat milder discrepancy, at the level of ∼ 10%. For

other quantities, quenching effects are not visible: the corresponding discrepancies are

smaller than the uncertainties associated with the fits. Interestingly, the resulting values of

m̂V/
√
2f̂PS for the dynamical and quenched simulations, which may be used to estimate the

coupling gVPP via the second KSRF relation, are found to be consistent with each other in

the massless limit [83]. The general conclusion of the comparison with the quenched results

is quite encouraging, although at present we do not know whether this conclusion is an

indication that the quenched approximation adequately captures the information encoded

in the two-point functions — possibly because of the proximity to large-N — or whether

it is just a trivial consequence of the large fermion masses we studied.

8 Continuum results: summary

In this section, we briefly summarise the continuum extrapolation results for the dynamical

theory, presented in section 6 and 7.

C1. Our continuum results for the decay constants and masses of PS, V, and AV states,

for the ensembles satisfying m̂2
PS ≤ 0.4, are reported, in units of the gradient flow

scale, in table 9.
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Figure 18. Meson masses squared from quenched (blue) and dynamical (red) calculations, in the
continuum limit obtained by considering all the ensembles with m̂2

PS ! 0.6, as in section 4.3. The
coloured bands illustrate the fit of the measurements used in the massless extrapolations, with the
width of the bands representing the statistical error in the fit.
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mass of the V meson shows a somewhat milder discrepancy, at the level of ∼ 10%. For

other quantities, quenching effects are not visible: the corresponding discrepancies are

smaller than the uncertainties associated with the fits. Interestingly, the resulting values of

m̂V/
√
2f̂PS for the dynamical and quenched simulations, which may be used to estimate the

coupling gVPP via the second KSRF relation, are found to be consistent with each other in

the massless limit [83]. The general conclusion of the comparison with the quenched results

is quite encouraging, although at present we do not know whether this conclusion is an

indication that the quenched approximation adequately captures the information encoded

in the two-point functions — possibly because of the proximity to large-N — or whether

it is just a trivial consequence of the large fermion masses we studied.

8 Continuum results: summary

In this section, we briefly summarise the continuum extrapolation results for the dynamical

theory, presented in section 6 and 7.

C1. Our continuum results for the decay constants and masses of PS, V, and AV states,

for the ensembles satisfying m̂2
PS ≤ 0.4, are reported, in units of the gradient flow

scale, in table 9.
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HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this
respect we choose the bare coupling � = 6.8 (well inside the weak coupling regime) for the
dedicated study of finite volume effects.

In Table 1 we present the ensemble details used for the measurements of the Euclidean
meson two-point correlation functions. In the table, we report the average plaquette values
in addition to the number of configurations Nconfigs and the difference between adjacent
trajectories �traj which removes the potential systematic effects due to autocorrelation.
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- Quenching effects are getting larger as the fermion mass gets smaller. 



Figure 17. Comparing the ratios of the vector mass and pseudoscalar decay constant mV/
p

2fPS

in various lattice gauge theories with two fundamental Dirac flavors. Purple, red, green and blue
colours are for SU(2) [40], SU(3) [97], SU(4) [96] and Sp(4) gauge groups , respectively. The black
circle is the experimental value of the coupling in the real world of QCD.

extrapolation leads us to the ratio in the massless and continuum limit of ⇠ 2.1.
The second KSRF prediction relates the on-shell coupling constant associated with the

decay of a vector meson into two pseudoscalars to mV and fPS in the following way

gV PP =
mV

p
2fPS

. (6.2)

As discussed above, the vector meson mass receives small corrections from the non-zero mass
in the linear mass regime, where the corresponding values at the lightest ensemble and in
the massless limit are 5.32(9) and 5.70(19)(14), respectively. In the real world, the mass of ⇢

meson in units of the pion decay constant f⇡ is roughly m⇢/f⇡ ⇠ 5.9. In the literature a few
lattice results for SU(N) gauge theories (other than N = 2) with two fundamental Dirac
fermions are available: for the lightest ensembles considered we found mV/fPS ⇠ 9.3(16) for
SU(2) [40] and ⇠ 5.2(3) for SU(4) [96], respectively. The general trend in SU(N) theories
is that the value of mV/fPS decreases as N increases, which complies with the expectation
of that gV PP decreases in the large N limit. Three values of N are not large enough to
perform a large N extrapolation, though. Near the threshold of mPS/mV ⇠ 0.5, the vector
meson mass we found for Sp(4) lies in between the values for SU(3) and SU(4). A more
reliable way to determine the coupling gVPP might be to use the low-energy EFT discussed
in the previous section: with some limitations we found the coupling in the massless limit,
gVPP = 6.0(4)(2), which is slightly larger than the KSRF value at non-zero fermion mass.
In Fig. 17, we summarize our findings for the coupling compared with the results for other
gauge groups.

We want to close this section by comparing the dynamical results with the quenched
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Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
invloves 10 unknow LECs to be determined from 5 measurements. The remaining two LECs
associated with the modified GMOR relation at NLO can be determined independently from
the measurement of m̂

2

PS
when a proper determination of mf is available. Note that not all

of LECs might be independent. For instance, the linear mass dependence of f̂
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can fully

be determined from the measurements of f̂
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AV
.

In order to perform a global fit using the functions in Eq. 5.5 we first prepare the meson
masses and decay constants in the continuum limit by subtracting the discretization effects
W

0

m,M
â and W

0

f,M
â from the original data. We restrict ourselves to the data set considered

for the linear fit of f̂
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Figure 17. Comparing the ratios of the vector mass and pseudoscalar decay constant mV/
p

2fPS

in various lattice gauge theories with two fundamental Dirac flavors. Purple, red, green and blue
colours are for SU(2) [40], SU(3) [97], SU(4) [96] and Sp(4) gauge groups , respectively. The black
circle is the experimental value of the coupling in the real world of QCD.
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As discussed above, the vector meson mass receives small corrections from the non-zero mass
in the linear mass regime, where the corresponding values at the lightest ensemble and in
the massless limit are 5.32(9) and 5.70(19)(14), respectively. In the real world, the mass of ⇢

meson in units of the pion decay constant f⇡ is roughly m⇢/f⇡ ⇠ 5.9. In the literature a few
lattice results for SU(N) gauge theories (other than N = 2) with two fundamental Dirac
fermions are available: for the lightest ensembles considered we found mV/fPS ⇠ 9.3(16) for
SU(2) [40] and ⇠ 5.2(3) for SU(4) [96], respectively. The general trend in SU(N) theories
is that the value of mV/fPS decreases as N increases, which complies with the expectation
of that gV PP decreases in the large N limit. Three values of N are not large enough to
perform a large N extrapolation, though. Near the threshold of mPS/mV ⇠ 0.5, the vector
meson mass we found for Sp(4) lies in between the values for SU(3) and SU(4). A more
reliable way to determine the coupling gVPP might be to use the low-energy EFT discussed
in the previous section: with some limitations we found the coupling in the massless limit,
gVPP = 6.0(4)(2), which is slightly larger than the KSRF value at non-zero fermion mass.
In Fig. 17, we summarize our findings for the coupling compared with the results for other
gauge groups.

We want to close this section by comparing the dynamical results with the quenched
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- The hypothesis vector meson dominance leads to the KSRF relation
Kowarabayashi & Suzuki (1966)
Riazuddin & Fayyazuddin (1966)
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Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
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Large Nc argument:

the autocorrelation time ⌧exp for all the ensembles as the referee suggested. We find that the
typical size of ⌧exp is less than 2, and in the worst case it is ⇠ 10. These results indicate that
there is no significant topological freezing in the considered ensembles.

Regarding the referee’s point c), it is indeed quite interesting to investigate the quark mass
dependence of the topological susceptibility and thus have better understanding on the vac-
uum structure of the system. However, we think that it is beyond the scope of this paper
since we calculate the topological charge to avoid the potential systematic e↵ects to the meson
masses and decay constants. Therefore, we want to leave the related studies for our future
work.

• 4) I am looking at Fig. 17 - actually at the SU(2) data point from Ref. 44. I am not sure I
believe that data point. I think that there is a lot of SU(2) data out there. Other authors would
be Detmold, who has several Nf=2 SU(2) papers, and Degrand and Liu (1606.01277). I think
it’s important to clean up this figure because it is something a phenomenologist can appreciate.
What it says to me is that with a small number of colors, the values of the decay constants are
reasonably independent of the group structure. This is unexpected to me, because the plot has
chiral symmetry breaking in all three (complex, real, and pseudoreal) classes, so why should
they all be the same? (I would then try to make some sort of color counting argument to
collapse all the curves. Maybe I should!)

We thank the referee for introducing other lattice literatures on two-flavor SU(2). In the
work by W. Detmold, M. McCullough, A. Pochinsky (1406.4116) and by T. DeGrand, Y.
Liu (1606.01277), the authors performed extensive studies on the SU(2) theory with two
fundamental Dirac fermions on the lattice. However, they did not carry out the continuum
extrapolation due to lack of ensembles. To make it clear on this point, we added the following
sentence to Sec. 7 as a footnote.

“In the literature more lattice results are available for SU(2) theory with two fundamental
Dirac fermions, see Refs. [48, 110]. However, we note that in these references continuum
extrapolations to the numerical data computed at finite lattice spacing had not been carried
out. Hence, we only use the results from [45] for the comparison.

After we submitted this manuscript, we realized that the SU(2) value in Figure 17 was not
correctly read from the literature: we misunderstood their parametrization for the decay
constant by a factor of

p
2. In the resubmitted manuscript, we present the corrected value

and the revised figure. Now, the large-N counting seems to roughly work even for SU(2) for
given uncertainties, i.e. mV/

p
2fPS ⇥

p
Nc/3 ⇠ 6.

• 5) A minor point: Eq. 7.1-7.2. Is the sqrt(2) a group theory factor? Does it depend on the
kind of chiral symmetry breaking? (I am asking out of ignorance.)

No, it isn’t the group theory factor. The factor of
p
2 in Eq. (7.2) is merely due to our

convention for the parametrization of the matrix elements so that the analogous value of the
pseudoscalar decay constant in real world QCD is 93 MeV. For instance, see Eqs. (5.3) and
(5.4) in Phys. Rev. D 97 no. 074505 (2018) [arXiv:1710.00806], where their convention for
fPS is 130 MeV.

5

f̂
2,�

M
L
0

f,M
m̂

2,�

M
L
0

m,M

PS 0.00617(28)(36) 3.02(22)(35)

V 0.0291(18)(11) 0.45(16)(14) 0.400(16)(10) 2.16(15)(9)

AV 0.039(7)(2) �0.82(15)(8) 1.07(19)(8) 1.42(6)(3)

Table 8. Coefficients in Eqs. 4.14 and 4.15 determined by using the results of a global fit.

In Fig. 23, we present the histogram of the coupling which shows a nice gaussian distribution
with the estimated value of g

�

VPP
= 6.0(4)(2).

To make a comparison with the results obtained individually from the linear fits to the
masses and decay constants in Section 4.3, we also calculate the relevant coefficients in Eqs.
4.14 and 4.15 by using the results of the global fit. We present the results in Table 8: they
are widely consistent with the ones in Table 7 except L

0

f,AV
which is now highly constrained

by the NLO EFT as in Eq. 5.5.
There are a few limitations in our attempt to fit the data using the linearized version

of the HLS EFT. First of all, it turns out that the fermion masses are not small enough
to make the linearization to be reliable without assumptions for cancellations of the higher
order corrections by the new terms in N2LO EFT. The most sensitive one appears in the
EFT formula for the vector meson mass, which requires |y3m

2

PS
| ⌧ |1 + |. From our

results of the global fit we find m
2

PS
⌧ 0.67, where the corrections from higher order

terms are marginally compatible with the statatical uncertainties only in the case of the
lightest emsemble. Secondly, the vector mesons are stable. Finally, the coupling gV which
is closely related to gVPP turns out to be not small, which makes the validity of the EFT
to be questionable. Some of the questions on the validity of the EFT can be answered
by decreasing the fermion mass below at which 2mPS . mV is satisfied, while others by
increasing the number of colors in the Sp(2N) gauge theory.

5.2 GMOR relation and Weinberg sum rules

Besides the linear mass dependences of the meson masses and decay constants discussed in
the previous section, there are several consequences of the HLS EFT which can be confirmed
from the numerical data. If we first restrict our attention to the pseudoscalar sector, we
have the GMOR relation whose NLO expression is given by

m
2

PSf
2

PS = mf (v
3 + mfv

2

5), (5.9)

where v and v5 are dimesionful low-enery constants. However, as noted in Section 4.2, it
is not appropriate to fully confirm the GMOR relation in the absence of the renormalized
fermion mass. In particular, we are not able to determine the LECs v and v5. Nevertheless,
we might still illustrate the relation in the continuum-extrapolated data by substituting
m

2

PS
for mf as we did throughout this work. In Fig. 13 we plot the numerical results of

m̂
2

PS
f̂
2

PS
with respect to m̂

2

PS
.

Going beyond the pseudoscalar sector, the first nontrivial result of the NLO EFT
with some reasonable assumptions for the truncation of operators is that the sum of the
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HLS EFT fit results: 
in the massless limit

- Collected lattice results for gauge theories with 2 fund. Dirac flavors.
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Compared to the original EFT results in terms of mf in [55], the above linearized ansatz
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In order to perform a global fit using the functions in Eq. 5.5 we first prepare the meson
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Figure 17. Comparing the ratios of the vector mass and pseudoscalar decay constant mV/
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in various lattice gauge theories with two fundamental Dirac flavors. Purple, red, green and blue
colours are for SU(2) [40], SU(3) [97], SU(4) [96] and Sp(4) gauge groups , respectively. The black
circle is the experimental value of the coupling in the real world of QCD.
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in the linear mass regime, where the corresponding values at the lightest ensemble and in
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meson in units of the pion decay constant f⇡ is roughly m⇢/f⇡ ⇠ 5.9. In the literature a few
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fermions are available: for the lightest ensembles considered we found mV/fPS ⇠ 9.3(16) for
SU(2) [40] and ⇠ 5.2(3) for SU(4) [96], respectively. The general trend in SU(N) theories
is that the value of mV/fPS decreases as N increases, which complies with the expectation
of that gV PP decreases in the large N limit. Three values of N are not large enough to
perform a large N extrapolation, though. Near the threshold of mPS/mV ⇠ 0.5, the vector
meson mass we found for Sp(4) lies in between the values for SU(3) and SU(4). A more
reliable way to determine the coupling gVPP might be to use the low-energy EFT discussed
in the previous section: with some limitations we found the coupling in the massless limit,
gVPP = 6.0(4)(2), which is slightly larger than the KSRF value at non-zero fermion mass.
In Fig. 17, we summarize our findings for the coupling compared with the results for other
gauge groups.
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- The hypothesis vector meson dominance leads to the KSRF relation
Kowarabayashi & Suzuki (1966)
Riazuddin & Fayyazuddin (1966)
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Large Nc argument:

the autocorrelation time ⌧exp for all the ensembles as the referee suggested. We find that the
typical size of ⌧exp is less than 2, and in the worst case it is ⇠ 10. These results indicate that
there is no significant topological freezing in the considered ensembles.

Regarding the referee’s point c), it is indeed quite interesting to investigate the quark mass
dependence of the topological susceptibility and thus have better understanding on the vac-
uum structure of the system. However, we think that it is beyond the scope of this paper
since we calculate the topological charge to avoid the potential systematic e↵ects to the meson
masses and decay constants. Therefore, we want to leave the related studies for our future
work.

• 4) I am looking at Fig. 17 - actually at the SU(2) data point from Ref. 44. I am not sure I
believe that data point. I think that there is a lot of SU(2) data out there. Other authors would
be Detmold, who has several Nf=2 SU(2) papers, and Degrand and Liu (1606.01277). I think
it’s important to clean up this figure because it is something a phenomenologist can appreciate.
What it says to me is that with a small number of colors, the values of the decay constants are
reasonably independent of the group structure. This is unexpected to me, because the plot has
chiral symmetry breaking in all three (complex, real, and pseudoreal) classes, so why should
they all be the same? (I would then try to make some sort of color counting argument to
collapse all the curves. Maybe I should!)

We thank the referee for introducing other lattice literatures on two-flavor SU(2). In the
work by W. Detmold, M. McCullough, A. Pochinsky (1406.4116) and by T. DeGrand, Y.
Liu (1606.01277), the authors performed extensive studies on the SU(2) theory with two
fundamental Dirac fermions on the lattice. However, they did not carry out the continuum
extrapolation due to lack of ensembles. To make it clear on this point, we added the following
sentence to Sec. 7 as a footnote.

“In the literature more lattice results are available for SU(2) theory with two fundamental
Dirac fermions, see Refs. [48, 110]. However, we note that in these references continuum
extrapolations to the numerical data computed at finite lattice spacing had not been carried
out. Hence, we only use the results from [45] for the comparison.

After we submitted this manuscript, we realized that the SU(2) value in Figure 17 was not
correctly read from the literature: we misunderstood their parametrization for the decay
constant by a factor of

p
2. In the resubmitted manuscript, we present the corrected value

and the revised figure. Now, the large-N counting seems to roughly work even for SU(2) for
given uncertainties, i.e. mV/

p
2fPS ⇥

p
Nc/3 ⇠ 6.

• 5) A minor point: Eq. 7.1-7.2. Is the sqrt(2) a group theory factor? Does it depend on the
kind of chiral symmetry breaking? (I am asking out of ignorance.)

No, it isn’t the group theory factor. The factor of
p
2 in Eq. (7.2) is merely due to our

convention for the parametrization of the matrix elements so that the analogous value of the
pseudoscalar decay constant in real world QCD is 93 MeV. For instance, see Eqs. (5.3) and
(5.4) in Phys. Rev. D 97 no. 074505 (2018) [arXiv:1710.00806], where their convention for
fPS is 130 MeV.

5

f̂
2,�

M
L
0

f,M
m̂

2,�

M
L
0

m,M

PS 0.00617(28)(36) 3.02(22)(35)

V 0.0291(18)(11) 0.45(16)(14) 0.400(16)(10) 2.16(15)(9)

AV 0.039(7)(2) �0.82(15)(8) 1.07(19)(8) 1.42(6)(3)

Table 8. Coefficients in Eqs. 4.14 and 4.15 determined by using the results of a global fit.

In Fig. 23, we present the histogram of the coupling which shows a nice gaussian distribution
with the estimated value of g

�

VPP
= 6.0(4)(2).

To make a comparison with the results obtained individually from the linear fits to the
masses and decay constants in Section 4.3, we also calculate the relevant coefficients in Eqs.
4.14 and 4.15 by using the results of the global fit. We present the results in Table 8: they
are widely consistent with the ones in Table 7 except L

0

f,AV
which is now highly constrained

by the NLO EFT as in Eq. 5.5.
There are a few limitations in our attempt to fit the data using the linearized version

of the HLS EFT. First of all, it turns out that the fermion masses are not small enough
to make the linearization to be reliable without assumptions for cancellations of the higher
order corrections by the new terms in N2LO EFT. The most sensitive one appears in the
EFT formula for the vector meson mass, which requires |y3m

2

PS
| ⌧ |1 + |. From our

results of the global fit we find m
2

PS
⌧ 0.67, where the corrections from higher order

terms are marginally compatible with the statatical uncertainties only in the case of the
lightest emsemble. Secondly, the vector mesons are stable. Finally, the coupling gV which
is closely related to gVPP turns out to be not small, which makes the validity of the EFT
to be questionable. Some of the questions on the validity of the EFT can be answered
by decreasing the fermion mass below at which 2mPS . mV is satisfied, while others by
increasing the number of colors in the Sp(2N) gauge theory.

5.2 GMOR relation and Weinberg sum rules

Besides the linear mass dependences of the meson masses and decay constants discussed in
the previous section, there are several consequences of the HLS EFT which can be confirmed
from the numerical data. If we first restrict our attention to the pseudoscalar sector, we
have the GMOR relation whose NLO expression is given by

m
2

PSf
2

PS = mf (v
3 + mfv

2

5), (5.9)

where v and v5 are dimesionful low-enery constants. However, as noted in Section 4.2, it
is not appropriate to fully confirm the GMOR relation in the absence of the renormalized
fermion mass. In particular, we are not able to determine the LECs v and v5. Nevertheless,
we might still illustrate the relation in the continuum-extrapolated data by substituting
m

2

PS
for mf as we did throughout this work. In Fig. 13 we plot the numerical results of

m̂
2

PS
f̂
2

PS
with respect to m̂

2

PS
.

Going beyond the pseudoscalar sector, the first nontrivial result of the NLO EFT
with some reasonable assumptions for the truncation of operators is that the sum of the
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HLS EFT fit results: 
in the massless limit

- Collected lattice results for gauge theories with 2 fund. Dirac flavors.

D
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U
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, or even heavier. (2.4)
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a
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↵
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⌘

(2.5)

Uµ(x) 2 Sp(4) & j = 1, 2, 3 (2.6)

m̂V = 2 m̂PS (2.7)
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⇠ 6.6 (2.8)
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⇠ 10% (2.9)

� = 7.62, 7.7, 7.85, 8.0, 8.2 (2.10)

f̂PS m̂PS m̂V(T) m̂AV,AT,S (2.11)
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mV

fPS
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h0|Oav|psi = h0| 1�5�µ 2|psi ⌘ fps pµ,

h0|Ov|vi = h0| 1�µ 2|vi ⌘ fv mv ✏µ,

h0|Oav|avi = h0| 1�5�µ 2|avi ⌘ fav mav ✏µ, (2.13)

HMC + RHMC

3 (Bare) parameter space

In the preliminary analysis we confirmed the existance of the first-order bulk phase tran-
sition by monitoring the plaquette values [1]. In Fig. 1, we show the average plaquette
values with respect to the bare fermion mass for given bare lattice couplings of � = 6.4, 6.5

and 6.6. This mass scan implies that the weak coupling regime, which allows use to take
a smooth continuum extrapolation, can be identified with the condition � >

⇠ 6.6. In this
respect we choose the bare coupling � = 6.8 (well inside the weak coupling regime) for the
dedicated study of finite volume effects.
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Pseudoscalar meson masses at the threshold
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Fund. fermions Anti-sym. 
fermions

- (Q) denotes the “quenched calculation”, i.e. no dynamical fermions in the sea.

- In SU(4) results, both two fundamental and two anti-symmetric Dirac fermions 
are in the sea. 

- For SU(2), SU(3) & Sp(4), simulations were performed including two dynamical 
fundamental Dirac flavors near the V-PS-PS threshold.



Strongly interacting massive particles

- The SIMPest scenario severely violates the Bullet cluster bound if the UV model is 
QCD-like theory, like the ones studied on the lattice.
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FIG. 1: Solid curves: The solution to the Boltzmann equation of the 3 ! 2 system, yielding the measured dark matter
relic abundance for the pions, m⇡/f⇡, as a function of the pion mass (left axis). Dashed curves: The self-scattering cross
section along the solution to the Boltzmann equation, �scatter/m⇡, as a function of pion mass (right axis). All curves are for
selected values of Nc and Nf , for an Sp(Nc) gauge group with a conserved (left panel) or broken (right panel) Sp(2Nf )
flavor symmetry. The solid horizontal line depicts the perturbative limit of m⇡/f⇡ ⇠< 2⇡, providing a rough upper limit on the
pion mass; the dashed horizontal line depicts the bullet-cluster and halo shape constraints on the self-scattering cross section,
Eq. (16), placing a rough lower limit on the pion mass. Each shaded region depicts the resulting approximate range for m⇡ for
the corresponding symmetry structure.

A comment is in order regarding higher-derivative cor-
rections. Throughout we have used the 4-point interac-
tion terms stemming from the mass and kinetic terms,
Eqs. (6) and (10). As is evident, the theory is pushed to
the strongly interacting regime where m⇡ is not far from
the e↵ective cuto↵, ⇤ = 2⇡f⇡; here higher-derivative
terms may induce O(1) e↵ects, shifting the lower bound
on the pion mass accordingly. The self-scattering cross
section of Eq. (17) is thus a proxy, which su�ces for the
purpose of obtaining a characteristic pion mass range.

Modifications to the presented canonical realization of
the SIMP mechanism are possible. For instance, it is
possible to write a mass term for the confining fermions
that explicitly breaks the flavor symmetry of Sp(2Nf ),
SU(Nf ) or SO(Nf ) in the class of Sp(Nc), SU(Nc) or
O(Nc) gauge theories. If one pion is lighter than the oth-
ers, this pion will be the dark matter. Since the WZW
term, Eq. (8), induces 3 ! 2 interactions between five
di↵erent flavors of pions, the decay of the other pions
to the lightest one must occur after freeze-out, and their
masses must be close. Considering the 4-pion interac-
tions, there are no self-interaction terms between pions
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ther details are given in the Appendix. The rough lower
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may be constrained by CMB spectral distortions [42].
Thus, unless the abundance of the unstable component
is negligible, the CMB places an important constraint on
a wide swath of otherwise viable parameter space. We
emphasize that this is not a generic feature of strongly
interacting dark sectors since the HS pions can be made
absolutely stable, as discussed above.

Models where some of the pions are unstable may be
cosmologically viable, provided all unstable species are
heavier than the lightest stable pion and decay at tem-
peratures below the corresponding mass splitting. In this
case, 2 ! 2 scattering in the HS depletes the abundance
of the unstable pions before they decay. CMB constraints
on this possibility are discussed in Sec. IV I. The relevant
mass splittings can arise from chiral symmetry breaking
corrections from HS quark masses, through higher-order
operators in the chiral Lagrangian such as [31]

↵6,7 B
2

0

�
Tr Mq U

†
± h.c.

�2

, (11)

where B0 is a dimensionful constant related to the HS
quark condensate and defined in Eq. (A3). These opera-
tors, with coe�cients ↵6,7 ⇠ O(10�3), can lift the unsta-
ble pions to the degree needed for cosmology if the values
of ↵6,7 are chosen judiciously [31, 43]. However, obtaining
the cosmologically viable spectrum requires ↵7 > 0 (of
opposite sign from the expected ⌘

0-mixing contribution)
and is about 2� away from SM measurements [31]. It is

therefore unlikely (but not impossible) that this mecha-
nism operates in SM-like theories. It is nonetheless plau-
sible that this spectrum may be realized in less SM-like
hidden sectors without G-parity.

We now turn to the problem of DM freeze-out in the
early universe. The first examples of SIMPs were de-
signed to realize the 3 ! 2 annihilation mechanism [2].
This process arises from a dimension-9 operator in the
Wess-Zumino-Witten term. The corresponding rate in
the early universe is given by

�3!2 = (neq

⇡ )2 h�v
2
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e
�2x

x5
(m⇡/f⇡)10 m⇡ , (12)

where x ⌘ m⇡/TSM, TSM is the temperature of the SM
bath, and n

eq

⇡ is the equilibrium number density of ⇡.
Due to the strong exponential suppression in Eq. (12),
the correct relic abundance is obtained for large values of
m⇡/f⇡ close to the perturbativity bound, i.e., m⇡/f⇡ ⇠

4⇡ [3]. This observation, combined with the e↵ective field
theory expectation for vector meson masses [19–21],

mV ⇠ 4⇡ f⇡/

p
Nc , (13)

suggests that the vector mesons play an important role
in the DM cosmology. Indeed, the Wess-Zumino-Witten
term gives rise to the pion semi-annihilation (2 ! 1)
process, ⇡⇡ ! ⇡V , with V decaying to the SM. This of-
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FIG. 1: Feynman diagrams contributing to 3 ! 2 processes for the dark pions with the vector meson interactions.
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FIG. 2: Contours of relic density (⌦h2 ⇡ 0.119) for m⇡ and m⇡/f⇡ and self-scattering cross section per DM mass in cm2/g as

a function of m⇡. The case without and with vector mesons are shown in black lines and colored lines respectively. We have

imposed the relic density condition for obtaining the contours of self-scattering cross section. Vector meson masses are taken

near the resonances with mV = 2(3)m⇡
p
1 + ✏V on left(right) plots. In both plots, c1 � c2 = �1 and ✏V = 0.1 are taken.

our interest, so we didn’t include it in our analysis.

While the !8 primarily decays to three pions because

m! < 2mK in the usual SM QCD, this is not necessar-

ily true in the case of dark QCD since we can vary the

pion/kaon mass. Since we are assuming all the eight pi-

ons/kaons are degenerate in mass, two-body decays such

as !8 ! KK could be allowed as well as usual three-body

decays such as !8 ! 3⇡. Then we find that the widths

of vector mesons with degenerate masses are identical as

follows,

�V =
a2g2mV

256⇡

✓
1� 4

m2
⇡

m2
V

◆3/2

. (25)

If we chose a QCD-like set of parameters (a ⇡ 2, c1�c2 =

�1 and c3 = 1), the widths of vector mesons would be

sizable for values of m⇡/f⇡ that yield the correct relic

density. However, if a ⌧ 1, then the mass relation, m2
V =

ag2f2
⇡ ⇡ 9m2

⇡ or 4m2
⇡, is maintained with �V /mV ⌧ 1.

For 3 ! 2 processes, we take the vector meson masses

near the resonances and make the thermal average under

the narrow width approximation with �V /mV ⌧ 1 in

Eq. (23). Then, the thermal averaged 3 ! 2 annihilation

cross section becomes [33]

h�v2iR ⇡

(
81⇡
128 ✏4V x

3e�
3
2 ✏V x, mV ⇡ 3m⇡,

8
3

p
⇡ ✏3/2V x1/2 e�✏V x, mV ⇡ 2m⇡,

(26)

where the e↵ective 3 ! 2 cross section before ther-

mal average is taken to be (�v2) = bV �V

(✏V �u2)2+�2
V
, with

 being the velocity-independent coe�cient, (✏V , �V ) =

(m
2
V �4m2

⇡
4m2

⇡
, mV �V

4m2
⇡

) and u2 = 1
2 (v

2
1 + v22) �

1
4v

2
3 for two-

pion resonances or (✏V , �V ) = (m
2
V �9m2

⇡
9m2

⇡
, mV �V

9m2
⇡

) and

Berlin, Blinov, Gori, Schuster & Toro (2018)

Choi, Lee, Ko & Natale (2018)

The vector resonances may rescue the 
SIMPs scenarios realized in QCD-like 
theories. 

Further lattice results will provide more 
useful information for the phenomenological 
inputs. 
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- Universal arguments for infrared confining theories yield

Figure 11. Continuum limit extrapolations of the glueball masses for selected excited states m/
p

�,
in units of the string tension, in Sp(4) Yang-Mills, as described in Sec. 5.3.2. States are labelled by
the quantum numbers of the octahedral group.

where C2(A) and C2(F ) are the quadratic Casimir of the adjoint and of the fundamental
representation, respectively, and ⌘ is a universal constant, in the sense that it depends on
the dimensionality of the spacetime, but not on the gauge group. Noting that for Sp(2N)

C2(A)

C2(F )
=

4 (N + 1)

2N + 1
, (5.29)

we find that our determination of the proportionality constant

⌘ = 5.27(15) , (5.30)

is compatible with the value ⌘ = 5.41(12) extracted from SU(N) in 3+1 dimensions [41].
The rest of the glueball spectrum also follows a pattern that is broadly similar to that

of SU(N). Another interesting quantity in the glueball sector is the ratio m2++/m0++ .
Using universality arguments, it has been argued in [40] that for confining theories where
the dynamics does not yield large anomalous dimensions, as in pure Yang-Mills, one should
find m2++/m0++ =

p
2. Our numerical results give m2++/m0++ = 1.425(32), a value that

is fully compatible with the conjecture of [40].
Besides being relevant for models of electroweak symmetry breaking based on a Pseudo-

Nambu-Goldstone interpretation of the Higgs field, the investigation of which is the central
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because of the common dependence on σ, but we expect
such effects to be small, and not to affect our discussion.
Figure 1 shows that the ratio R for the sequence of

SpðNcÞ YM theories is compatible with a constant. This
confirms that Oð1=NcÞ effects, if present, are smaller than
the current uncertainties, the magnitude of which varies
between ∼2% for Spð4Þ and 5% for Spð8Þ.

III. GLUEBALL MASSES: EARLIER
LATTICE RESULTS

We include in Table I and Fig. 1 our measurements
(denoted SpðNcÞ4), together with lattice results by other
collaborations, for various classes of YM theories.
The spectrum of YM glueballs in D ¼ 3þ1dimensions

with SUðNcÞ group (denoted SUðNcÞ4) was studied in
Refs. [5,9]. In the former, the authors use a singlevalue of the
lattice parameters for each value ofNc, without studying the
approach to the continuum limit. Conversely, Ref. [5]
reports continuum limits for the glueball masses expressed
in units of the string tension σ, but the variational method
uses a smaller basis of operators of the octahedral group in
respect to our work, and the T2 channel is not measured.

As long as we restrict attention to the lightest states in the
spectrum (the0þþ and 2þþ ground states), at the same lattice
spacing the results of the two approaches are in good
agreement, and hence we compare the SpðNcÞ sequence
of measurements, as well as their extrapolation to large Nc,
to those of Ref. [5]. As visible in Fig. 1, the agreement in the
ratio R across the gauge groups is excellent.
We also summarize the lattice measurements for

SOðNcÞ in D ¼ 2þ1dimensions (SOðNcÞ3), taken from
Tables 28, 29 and 31 of Ref. [6] (see also Fig. 26 therein).
We include only continuum limit results, and two different
types of large-Nc extrapolations. Finally, we collect results
for SUðNcÞ theories in D ¼ 2þ1dimensions (SUðNcÞ3)
from Tables B3–B11 of Ref. [7]. The extrapolation to
SUð∞Þ has been performed by including 1=N2

c as well as
1=N4

c corrections.
Lattice results on R show the emergence of a regular

pattern, that depends only on the dimensionality D of the
system. The group sequence [SUðNcÞ, SpðNcÞ or SOðNcÞ]
and the number of colors Nc do not appear to affect R,
within current uncertainties—with some deviation from
this pattern in D ¼ 2þ1dimensions for SUð3Þ, SOð3Þ and
SUð2Þ. We have at our disposal preliminary results for
excited states and states with different quantum numbers in
SpðNcÞ theories (to appear in Ref. [4]), and we did not find
significant evidence of similar regular patterns, reinforcing
the notion that the lightest 0þþ and 2þþ glueballs play a
special role in YM theories.

IV. GLUEBALL MASSES: A BRIEF SURVEY
OF ANALYTICAL RESULTS

In Fig. 1, we compare the result of lattice measurements
of the ratio R to two classes of semianalytical calculations,
performed either via gauge-gravity dualities arising in the
context of supergravity, or via alternative field-theory
methods. In all these models, the ratio R is known only
in the strict large-Nc limit, as1=Nc corrections are ignored.
The GPPZ model was proposed in Ref. [19] (see also

Refs. [20–22]) as a simple, classical supergravity dual of
mass-deformed, large-Nc, N ¼ 4 Super-Yang-Mills. The
geometry is singular and asymptotically approaches AdS5.
The spectrum of fluctuations yields R ¼

ffiffiffi
2

p
[11] (see also

Refs. [23–25]). This result happens to be in exact agree-
ment with that of the large-Nc field-theory study in
Ref. [17] (see Table 1 therein), which in Fig. 1 we denote
as YM4. A closely related model is studied in Ref. [12], that
reports a holographic calculation based upon the circle
reduction of the system yielding the AdS5 × S5 background
(see also Ref. [13]). The result in this case is R ¼ 1.46.
The close proximity between the results of these two
holographic calculations (both of which use geometries
that are asymptotically AdS5), Bochicchio’s field-theoretical
approach [17,26], and lattice calculations in SpðNcÞ and
SUðNcÞ is remarkable.

FIG. 1. Numerical and analytical results for the ratio R defined
in Eq. (1). Different shaped markers denote the lattice measure-
ments with continuum extrapolations in D ¼ 3þ1dimensions
for SpðNcÞ and for SUðNcÞ [5], as well as in D ¼ 2þ1
dimensions for SOðNcÞ [6] and SUðNcÞ [7]. Extrapolations to
the Nc → ∞ limit are also included. Differently rendered lines at
R ¼

ffiffiffi
2

p
;1.46;1.57;1.61;1.74, are the holographic calculations

in the GPPZ model [11], the circle reduction of AdS5 × S5

[12,13], the holographic model Bconf
8 in Ref. [14], the Witten

model [12,15], and the circle reduction of Romans supergravity
[15,16], respectively. With R ¼

ffiffiffi
2

p
;1.64 we report the field

theoretical results from Refs. [17,18], for YM theories in D ¼
3þ1and D ¼ 2þ1dimensions, respectively. More details can
be found in the main text.
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We report the masses of the lightest spin-0 and spin-2 glueballs obtained in an extensive lattice study of
the continuum and infinite volume limits of SpðNcÞ gauge theories for Nc ¼ 2, 4, 6, 8. We also extrapolate
the combined results toward the large-Nc limit. We compute the ratio of scalar and tensor masses, and
observe evidence that this ratio is independent of Nc. Other lattice studies of Yang-Mills theories at the
same space-time dimension provide a compatible ratio. We further compare these results to various
analytical ones and discuss them in view of symmetry-based arguments related to the breaking of scale
invariance in the underlying dynamics, showing that a constant ratio might emerge in a scenario in which
the 0þþ glueball is interpreted as a dilaton state.
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I. INTRODUCTION

In D ¼ 3þ 1 space-time dimensions, Yang-Mills (YM)
theories are classically scale-invariant. At high energies the
theory is perturbative, and governed by a trivial fixed point—
this is the essence of asymptotic freedom. Scale symmetry is
anomalous though, broken by quantum effects that make the
theory flow away from its trivial fixed point, and introduce
an intrinsic scale Λ, via dimensional transmutation.
At high energy, the massless gluons, carrying color

charges, are the natural choice of degrees of freedom to
describe small perturbations around the trivial fixed point.
Yang-Mills theories are believed to confine at low energies
OðΛÞ. Low-energy excitations are color singlets, called
glueballs, and their spectrum is gapped. The phenomena

associated with the transition to the confined phase are
intrinsically nonperturbative and difficult to study.
In Ref. [1], some of us started an extensive study of

SpðNcÞ gauge theories, which includes calculating the
masses of the glueballs in the YM theory. The spectrum of
Spð4Þ glueballs was one of the most robust results of that
exploratory and agenda setting paper. We update the
measurements for the Spð4Þ group, by doubling the size
of the combined statistical ensemble, and then proceed to
the next step of this program, by performing detailed
studies of the YM theory (with no matter content) with
gauge groups Spð2Þ, Spð6Þ, and Spð8Þ (see also prelimi-
nary results in Ref. [2]). We report here our results for the
lightest scalar and tensor glueballs.
Understanding the glueball spectrum is tantamount to

solving the YM theory, and uncovering the mechanism of
confinement. Reference [3] suggested that the quantity

R≡ m 2þþ

m 0þþ
; ð1Þ

defined as the ratio of masses of the glueballs with quantum
number JPC ¼ 2þþ and JPC ¼ 0þþ, captures some uni-
versal, intrinsic properties of YM theories, in the sense that
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Conjecture proposed by 

D. Hong et. al. (2017)

will be in a position to probe further by performing numerical studies of Sp(2N) guage
theories at larger N .

The rest of the glueball spectrum also follows a patter that is broadly similar to that of
SU(N). Another interesting quantity in the glueball sector is the ratio m2++/m0++ . Using
universality arguments, it has been argued in [23] that for infrared confining theories where
there is no influence (in the RG group sense) from any IR conformal point, one should find
m2++/m0++ =

p
2. Our numerical results give m2++/m0++ = 1.425(32), a value that is

fully compatible with the conjecture of [23].
Finally, another interesting observation has been put forward in [24], where it is sug-

gested that
m2

0++

�
= ⌘

C2(A)

C2(F )
, (5.31)

where C2(A) and C2(F ) are the quadratic Casimirs of the adjoint and of the adjoint rep-
resentation, respectively, and ⌘ is a universal constant, in the sense that it depends on the
dimensionality of the spacetime, but not on the gauge group. Noting that for Sp(2N)

C2(A)

C2(F )
=

4 (N + 1)

2N + 1
, (5.32)

we find

⌘ = 5.27(15) , (5.33)

which is compatible with the value ⌘ = 5.41(12) extracted from SU(N) groups in 3+1
dimensions in [24].

To conclude this section, in addition to being relevant for models of electroweak symme-
try breaking based on a Pseudo-Nambu-Goldstone interpretation of the Higgs field, whose
investigation is the central leitmotif of this paper, studies of Sp(2N) pure gauge theories
provide new relevant information on universal aspects of Yang-Mills dynamics. We shall
develop this latter line of research in future numerical investigations.

6 Of quenched mesons: Masses and decay constants

In this Section, we perform the calculation of the masses and decay constants of the lightest
mesons in quenched approximation. The main purpose of this Section is to illustrate the
process that we envision we will carry out once simulations with dynamical quarks are
available. As such, while we will attempt a comparison with the EFT, and we will discuss
its implications, we do not expect the results to have much physics relevance.

We also highlight that the EFT we wrote, within the limitations we discuss, describes
the continuum limit of the dynamical simulations, not the quenched one. In principle, one
could make more sense of the comparison by adopting the approach of quenched chiral
perturbation theory [62, 63] or of partially-quenched chiral perturbation theory [64–66],
but for present purposes our strategy will suffice.
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The universal constant, only depends on the space-time dimension.

PLB 775 (2017) 89-93

- Casimir scaling: Universality in pure SU(N), SO(N), Sp(2N) Yang-Mills 

90 D.K. Hong et al. / Physics Letters B 775 (2017) 89–93

Fig. 1. The universal ratio η (left panel), and glueball masses squared in units of the string tension (right panel), for various YM theories as a function of 1/N . The solid 
curves are the Casimir ratio C2(A)/C2(F ) for SU(N) (upper curve) and SO(N) (lower curve), respectively. The value of η from the tension of the SO(3) fundamental string is 
marked as ⋄.

m2
0++ = ηκ2 C2(A) , (3)

where η is a universal ratio and C2(A) the quadratic Casimir for 
the adjoint representation. The existence of the universal ratio η is 
consistent with the large-N universality of YM theories, supported 
by Wilson loop calculations [19] and gauge-gravity dualities [20]. 
At finite N , the ratio of the eigenvalues of the relevant quadratic 
Casimir operators is [21]

C2(A)

C2(F )
=

⎧
⎪⎪⎨

⎪⎪⎩

2N2

N2− 1 for SU(N)

2(N− 2)
N− 1 for SO(N)

4(N+1)
2N+1 for Sp(2N) ,

(4)

and approaches 2 in the large-N limit.
Glueball masses and string tensions have been calculated by 

various collaborations for YM theories in 3 + 1 and 2 + 1 di-
mensions [6–13]. From the continuum-extrapolated lattice results 
of glueball mass and string tension, taking the data from the 
most recent large-N calculations available in the literature [8,11,
13] (Fig. 1), we find1

η(0++) ≡
m2

0++

σ
· C2(F )

C2(A)
=

{
5.41(12), (d = 3 + 1) ,
8.440(14)(76), (d = 2 + 1) .

(5)

For 3 + 1 dimensions Eq. (5) is the constant fit of SU(N) results 
over 2 ≤ N ≤ 8, with χ2/d.o.f. ≃ 1. For 2 + 1 dimensions, lattice 
results are available for SU(N), as well for SO(N), with 2 ≤ N ≤
16, hence we performed a constant fit for the universal ratio η of 
both data sets.2 The resulting statistical error is quoted in the first 
parentheses in Eq. (5), with somewhat larger value of χ2/d.o.f. ≃
1.9.3

Deviations from universality in 2 + 1 dimensions between two 
classes of gauge groups are assessed by calculating η separately. 
We find η = 8.386(25) (χ2/d.o.f. ≃ 1.3) for SO(N) and η =
8.462(16) (χ2/d.o.f. ≃ 1.9) for SU(N). Given the expectation that 

1 Our conjecture for the universal ratio is also supported by the analytic calcu-
lation of the ground-state glueball mass in 2 + 1 dimensional SU(N) gauge theo-
ries [22], which finds η(0++) ≃ 8.41, and suspected in the constituent gluon model 
in [23].

2 The string tension can be defined also for SO(3) by considering distances of the 
order of the confinement scale. Yet, it is affected by large systematic uncertainties 
due to its instability [11,13]. To mitigate the systematics, instead of this quantity, we 
use the string tension obtained from the fundamental of SU(2), assuming Casimir 
scaling for the string tension. We checked that by using the measured value of the 
string tension of SO(3), the value of η does not change but yields a poor χ2/d.o.f ≃
4.8.

3 The χ2 distribution does not improve significantly, even if the data for the low-
est N is excluded.

the large-N limit of the two sets should coincide, this difference of 
3σ level is probably due to the systematic errors in the lattice data. 
We account for the discrepancy with a systematic error reported 
in the second parenthesis in Eq. (5). We also studied two heavier 
states, the 2++ glueball and the first excited scalar glueball, 0∗++ . 
The excited states start to see the deviation from the area-law con-
finement, hence it is not surprising that the 0∗++ does not show 
universal behavior. (See Fig. 2.) For the 2++ , however, it is inclu-
sive, because the constant fit gives a poor χ2/d.o.f. ≃ 19 for the 
2++ tensor glueballs in 2 + 1 dimensions, while it fits much better 
in 3 + 1 dimensions with χ2/d.o.f. ≃ 1.1.

3. Glueball mass and Casimir scaling

Motivated by the strong numerical evidence for Casimir scaling, 
we provide three analytical arguments to explain its origin. None 
of the arguments is fully conclusive, as they all rely on specific 
dynamical assumptions that we highlight explicitly, yet the picture 
that emerges is that Casimir scaling of ground state mass should 
capture much of the essence of the confinement properties of YM 
theories.

3.1. Bethe–Salpeter equation

The amplitude for creating two gluons out of vacuum to form 
a color-singlet bound state of momentum P with a polarization λ
can be defined as

&
µν
R (x1, x2; P ,λ) = ⟨0| TAµ a(x1)Aν a(x2) |R(P ,λ)⟩ , (6)

where T denotes the time-ordered product and ⟨0| is the vacuum. 
Summation over color indices a is understood.

The bound state amplitude satisfies the Bethe–Salpeter (BS) 
equations, obtained from the gluon four-point scattering amplitude 
near the pole, which are diagrammatically shown for the ampu-
tated BS amplitude in Fig. 3.

From the BS equation, the scalar (amputated) amplitude χP
obeys, in Euclidean space,
[
∂2 − P 2

]
χP (x) =

∫
d4 y V (x − y)χP (y) , (7)

with x = x1 − x2 the displacement of two external gluons.
The area law for confinement is associated with the Regge be-

havior of the spectrum: M2
n ∼ n, where n = 1, 2, · · · are the radial 

quantum numbers, reproduced by the approximate BS kernel

V (x − y) ≈ 1
2
ω2x2 δ4(x − y) . (8)
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⌘(Sp) = 5.35(13)

⌘(SU) = 5.41(10)

⌘(Sp + SU) = 5.388(81)
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Figure 5. Top: ratios defining the conjectured universal constant ⌘ for both SU(N) and Sp(N).
Note that the naming convention for the symplectic group has been altered to better accomodate
the data into the plots; fits are also shown for the Sp(N) family, the SU(N) family and the
combination of Sp(N) and SU(N) results. Bottom: measured ratios m

2
0++/� further divided by

the fitted universality constant ⌘ plotted as a function of 1/N ; lines are the ratios of the quadratic
Casimir operators of the adjoint representation over the corresponding ones of the fundamental
representation as N varies (we note that, for the sake of the visualisation, in this figure we have
represented N as a real number).
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- Considered mass range,                                            , is applicable for SIMP 
studies, but requires an extrapolation to be used for composite Higgs.

C4. In Section 7 the continuum limit results are discussed in units of the decay constant
fPS of the PS states, that are summarised in Table 11, and illustrated in Fig. 16.
We include also the mass of the scalar flavoured state S. All our measurements are
in the range 1.39 <

⇠ m̂V/m̂PS
<
⇠ 1.87, in which the V states cannot decay to states

containing two PS particles. (Analogous considerations apply to the 3-body decay of
the AV mesons.) This range may be of direct relevance in the context of dark matter
models.

C5. We perform the extrapolation to the massless limit. The masses of V, AV, and
S states are mV/fPS = 8.08(32), mAV/fPS = 13.4(1.5), and mS/fPS = 14.2(1.7).
The decay constants of V and AV states in the continuum and massless limit are
fV/fPS = 2.15(8) and fAV/fPS = 2.3(4), respectively—see Table 11.

C6. We find that fV/fPS = 2.15(8) is larger than expected on the basis of the first KSRF
relation, which would yield fV =

p
2 fPS—see Section 7.

C7. The second KSRF relation is satisfied, with gVPP = 6.0(4)(2) from the global fit, and
mV/(

p
2fPS) = 5.72(18)(13) obtained from the massless limit extrapolation.

C8. We compare the continuum and massless limit results to the literature on theories
with two Dirac fermions on the fundamental. Fig. 17 shows that the VPP coupling
is smaller than in the SU(2) theory, but comparable to SU(3) and SU(4).

C9. We close Section 7 by comparing our results, obtained with dynamical fermions, to
quenched calculations [83]. (See Figures 18 and 19.) We find that, in the massless
limit, the decay constant squared of the PS state f̂

2

PS
is ⇠ 20% lower than the quenched

result. The mass squared of the (flavoured) scalar is ⇠ 25% lower than in the quenched
result, while that of the vector is lower by ⇠ 10%. In the other observables, the
dynamical and quenched results are compatible with one another, given the current
uncertainties.

9 Conclusions and outlook

Following along the programme outlined in Ref. [60], with this paper we have made a sub-
stantial step forwards in the study of the gauge theory with Sp(4) group and Nf = 2 (Dirac)
fundamental fermions, that at long distance yields pNGBs describing the SU(4)/Sp(4)

coset, of relevance in the CHM context. We have adopted the Wilson-Dirac lattice action
for gauge and fermion degrees of freedom, and performed numerical studies via the HMC
method, with dynamical fermions. We have repeated the calculations at several values of
the lattice bare parameters (fermion mass and gauge coupling). Our main result is the first
continuum extrapolation of the Sp(4) measurements for the masses and decay constants of
the lightest, flavoured, spin-0 and spin-1 mesons. While numerical studies are performed
in a regime of fermion masses large enough to preclude the decay of heavier mesons to the
pNGBs, we have presented also a preliminary massless extrapolation, and compared the
results to those of the quenched approximation. Summaries of the lattice and continuum
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- In the massless limit, we found
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fundamental fermions, that at long distance yields pNGBs describing the SU(4)/Sp(4)

coset, of relevance in the CHM context. We have adopted the Wilson-Dirac lattice action
for gauge and fermion degrees of freedom, and performed numerical studies via the HMC
method, with dynamical fermions. We have repeated the calculations at several values of
the lattice bare parameters (fermion mass and gauge coupling). Our main result is the first
continuum extrapolation of the Sp(4) measurements for the masses and decay constants of
the lightest, flavoured, spin-0 and spin-1 mesons. While numerical studies are performed
in a regime of fermion masses large enough to preclude the decay of heavier mesons to the
pNGBs, we have presented also a preliminary massless extrapolation, and compared the
results to those of the quenched approximation. Summaries of the lattice and continuum

– 43 –

C4. In Section 7 the continuum limit results are discussed in units of the decay constant
fPS of the PS states, that are summarised in Table 11, and illustrated in Fig. 16.
We include also the mass of the scalar flavoured state S. All our measurements are
in the range 1.39 <

⇠ m̂V/m̂PS
<
⇠ 1.87, in which the V states cannot decay to states

containing two PS particles. (Analogous considerations apply to the 3-body decay of
the AV mesons.) This range may be of direct relevance in the context of dark matter
models.

C5. We perform the extrapolation to the massless limit. The masses of V, AV, and
S states are mV/fPS = 8.08(32), mAV/fPS = 13.4(1.5), and mS/fPS = 14.2(1.7).
The decay constants of V and AV states in the continuum and massless limit are
fV/fPS = 2.15(8) and fAV/fPS = 2.3(4), respectively—see Table 11.

C6. We find that fV/fPS = 2.15(8) is larger than expected on the basis of the first KSRF
relation, which would yield fV =

p
2 fPS—see Section 7.

C7. The second KSRF relation is satisfied, with gVPP = 6.0(4)(2) from the global fit, and
mV/(

p
2fPS) = 5.72(18)(13) obtained from the massless limit extrapolation.

C8. We compare the continuum and massless limit results to the literature on theories
with two Dirac fermions on the fundamental. Fig. 17 shows that the VPP coupling
is smaller than in the SU(2) theory, but comparable to SU(3) and SU(4).

C9. We close Section 7 by comparing our results, obtained with dynamical fermions, to
quenched calculations [83]. (See Figures 18 and 19.) We find that, in the massless
limit, the decay constant squared of the PS state f̂

2

PS
is ⇠ 20% lower than the quenched

result. The mass squared of the (flavoured) scalar is ⇠ 25% lower than in the quenched
result, while that of the vector is lower by ⇠ 10%. In the other observables, the
dynamical and quenched results are compatible with one another, given the current
uncertainties.

9 Conclusions and outlook

Following along the programme outlined in Ref. [60], with this paper we have made a sub-
stantial step forwards in the study of the gauge theory with Sp(4) group and Nf = 2 (Dirac)
fundamental fermions, that at long distance yields pNGBs describing the SU(4)/Sp(4)

coset, of relevance in the CHM context. We have adopted the Wilson-Dirac lattice action
for gauge and fermion degrees of freedom, and performed numerical studies via the HMC
method, with dynamical fermions. We have repeated the calculations at several values of
the lattice bare parameters (fermion mass and gauge coupling). Our main result is the first
continuum extrapolation of the Sp(4) measurements for the masses and decay constants of
the lightest, flavoured, spin-0 and spin-1 mesons. While numerical studies are performed
in a regime of fermion masses large enough to preclude the decay of heavier mesons to the
pNGBs, we have presented also a preliminary massless extrapolation, and compared the
results to those of the quenched approximation. Summaries of the lattice and continuum

– 43 –

The first KSRF relation                       is largely violated.

C4. In Section 7 the continuum limit results are discussed in units of the decay constant
fPS of the PS states, that are summarised in Table 11, and illustrated in Fig. 16.
We include also the mass of the scalar flavoured state S. All our measurements are
in the range 1.39 <

⇠ m̂V/m̂PS
<
⇠ 1.87, in which the V states cannot decay to states

containing two PS particles. (Analogous considerations apply to the 3-body decay of
the AV mesons.) This range may be of direct relevance in the context of dark matter
models.

C5. We perform the extrapolation to the massless limit. The masses of V, AV, and
S states are mV/fPS = 8.08(32), mAV/fPS = 13.4(1.5), and mS/fPS = 14.2(1.7).
The decay constants of V and AV states in the continuum and massless limit are
fV/fPS = 2.15(8) and fAV/fPS = 2.3(4), respectively—see Table 11.

C6. We find that fV/fPS = 2.15(8) is larger than expected on the basis of the first KSRF
relation, which would yield fV =

p
2 fPS—see Section 7.

C7. The second KSRF relation is satisfied, with gVPP = 6.0(4)(2) from the global fit, and
mV/(

p
2fPS) = 5.72(18)(13) obtained from the massless limit extrapolation.

C8. We compare the continuum and massless limit results to the literature on theories
with two Dirac fermions on the fundamental. Fig. 17 shows that the VPP coupling
is smaller than in the SU(2) theory, but comparable to SU(3) and SU(4).

C9. We close Section 7 by comparing our results, obtained with dynamical fermions, to
quenched calculations [83]. (See Figures 18 and 19.) We find that, in the massless
limit, the decay constant squared of the PS state f̂

2

PS
is ⇠ 20% lower than the quenched

result. The mass squared of the (flavoured) scalar is ⇠ 25% lower than in the quenched
result, while that of the vector is lower by ⇠ 10%. In the other observables, the
dynamical and quenched results are compatible with one another, given the current
uncertainties.

9 Conclusions and outlook

Following along the programme outlined in Ref. [60], with this paper we have made a sub-
stantial step forwards in the study of the gauge theory with Sp(4) group and Nf = 2 (Dirac)
fundamental fermions, that at long distance yields pNGBs describing the SU(4)/Sp(4)

coset, of relevance in the CHM context. We have adopted the Wilson-Dirac lattice action
for gauge and fermion degrees of freedom, and performed numerical studies via the HMC
method, with dynamical fermions. We have repeated the calculations at several values of
the lattice bare parameters (fermion mass and gauge coupling). Our main result is the first
continuum extrapolation of the Sp(4) measurements for the masses and decay constants of
the lightest, flavoured, spin-0 and spin-1 mesons. While numerical studies are performed
in a regime of fermion masses large enough to preclude the decay of heavier mesons to the
pNGBs, we have presented also a preliminary massless extrapolation, and compared the
results to those of the quenched approximation. Summaries of the lattice and continuum

– 43 –

- V-PS-PS coupling

from the Global fit using HLS EFT  compared to

C4. In Section 7 the continuum limit results are discussed in units of the decay constant
fPS of the PS states, that are summarised in Table 11, and illustrated in Fig. 16.
We include also the mass of the scalar flavoured state S. All our measurements are
in the range 1.39 <

⇠ m̂V/m̂PS
<
⇠ 1.87, in which the V states cannot decay to states

containing two PS particles. (Analogous considerations apply to the 3-body decay of
the AV mesons.) This range may be of direct relevance in the context of dark matter
models.

C5. We perform the extrapolation to the massless limit. The masses of V, AV, and
S states are mV/fPS = 8.08(32), mAV/fPS = 13.4(1.5), and mS/fPS = 14.2(1.7).
The decay constants of V and AV states in the continuum and massless limit are
fV/fPS = 2.15(8) and fAV/fPS = 2.3(4), respectively—see Table 11.

C6. We find that fV/fPS = 2.15(8) is larger than expected on the basis of the first KSRF
relation, which would yield fV =

p
2 fPS—see Section 7.

C7. The second KSRF relation is satisfied, with gVPP = 6.0(4)(2) from the global fit, and
mV/(

p
2fPS) = 5.72(18)(13) obtained from the massless limit extrapolation.

C8. We compare the continuum and massless limit results to the literature on theories
with two Dirac fermions on the fundamental. Fig. 17 shows that the VPP coupling
is smaller than in the SU(2) theory, but comparable to SU(3) and SU(4).

C9. We close Section 7 by comparing our results, obtained with dynamical fermions, to
quenched calculations [83]. (See Figures 18 and 19.) We find that, in the massless
limit, the decay constant squared of the PS state f̂

2

PS
is ⇠ 20% lower than the quenched

result. The mass squared of the (flavoured) scalar is ⇠ 25% lower than in the quenched
result, while that of the vector is lower by ⇠ 10%. In the other observables, the
dynamical and quenched results are compatible with one another, given the current
uncertainties.

9 Conclusions and outlook

Following along the programme outlined in Ref. [60], with this paper we have made a sub-
stantial step forwards in the study of the gauge theory with Sp(4) group and Nf = 2 (Dirac)
fundamental fermions, that at long distance yields pNGBs describing the SU(4)/Sp(4)

coset, of relevance in the CHM context. We have adopted the Wilson-Dirac lattice action
for gauge and fermion degrees of freedom, and performed numerical studies via the HMC
method, with dynamical fermions. We have repeated the calculations at several values of
the lattice bare parameters (fermion mass and gauge coupling). Our main result is the first
continuum extrapolation of the Sp(4) measurements for the masses and decay constants of
the lightest, flavoured, spin-0 and spin-1 mesons. While numerical studies are performed
in a regime of fermion masses large enough to preclude the decay of heavier mesons to the
pNGBs, we have presented also a preliminary massless extrapolation, and compared the
results to those of the quenched approximation. Summaries of the lattice and continuum

– 43 –

C4. In Section 7 the continuum limit results are discussed in units of the decay constant
fPS of the PS states, that are summarised in Table 11, and illustrated in Fig. 16.
We include also the mass of the scalar flavoured state S. All our measurements are
in the range 1.39 <

⇠ m̂V/m̂PS
<
⇠ 1.87, in which the V states cannot decay to states

containing two PS particles. (Analogous considerations apply to the 3-body decay of
the AV mesons.) This range may be of direct relevance in the context of dark matter
models.

C5. We perform the extrapolation to the massless limit. The masses of V, AV, and
S states are mV/fPS = 8.08(32), mAV/fPS = 13.4(1.5), and mS/fPS = 14.2(1.7).
The decay constants of V and AV states in the continuum and massless limit are
fV/fPS = 2.15(8) and fAV/fPS = 2.3(4), respectively—see Table 11.

C6. We find that fV/fPS = 2.15(8) is larger than expected on the basis of the first KSRF
relation, which would yield fV =

p
2 fPS—see Section 7.

C7. The second KSRF relation is satisfied, with gVPP = 6.0(4)(2) from the global fit, and
mV/(

p
2fPS) = 5.72(18)(13) obtained from the massless limit extrapolation.

C8. We compare the continuum and massless limit results to the literature on theories
with two Dirac fermions on the fundamental. Fig. 17 shows that the VPP coupling
is smaller than in the SU(2) theory, but comparable to SU(3) and SU(4).

C9. We close Section 7 by comparing our results, obtained with dynamical fermions, to
quenched calculations [83]. (See Figures 18 and 19.) We find that, in the massless
limit, the decay constant squared of the PS state f̂

2

PS
is ⇠ 20% lower than the quenched

result. The mass squared of the (flavoured) scalar is ⇠ 25% lower than in the quenched
result, while that of the vector is lower by ⇠ 10%. In the other observables, the
dynamical and quenched results are compatible with one another, given the current
uncertainties.

9 Conclusions and outlook

Following along the programme outlined in Ref. [60], with this paper we have made a sub-
stantial step forwards in the study of the gauge theory with Sp(4) group and Nf = 2 (Dirac)
fundamental fermions, that at long distance yields pNGBs describing the SU(4)/Sp(4)

coset, of relevance in the CHM context. We have adopted the Wilson-Dirac lattice action
for gauge and fermion degrees of freedom, and performed numerical studies via the HMC
method, with dynamical fermions. We have repeated the calculations at several values of
the lattice bare parameters (fermion mass and gauge coupling). Our main result is the first
continuum extrapolation of the Sp(4) measurements for the masses and decay constants of
the lightest, flavoured, spin-0 and spin-1 mesons. While numerical studies are performed
in a regime of fermion masses large enough to preclude the decay of heavier mesons to the
pNGBs, we have presented also a preliminary massless extrapolation, and compared the
results to those of the quenched approximation. Summaries of the lattice and continuum

– 43 –

The second KSRF relation                            is satisfied.

resulting ratios of the masses and decay constants to f̂PS, which are rendered in black colour
in Figure 16 . Notice that the ratio are independent of the gradient flow scale w0, so that
fV/fPS = f̂V/f̂PS (and analogous for all dimensionless quantities in Table 11).

The spectroscopy of the lightest meson states is captured to some approximation by
the two KSRF phenomenological relations [113, 114]. The first such relation states that

fV =
p

2fPS , (7.1)

which is rather close to real-world QCD, as taking the experimental value of the rho meson
decay constant to be f⇢ ' 148 MeV, yields f⇢/f⇡ ⇠ 1.6 [115]. We can compare our results
for Sp(4) with the first KSRF relation by looking at f̂V/f̂PS in Figure 16. For m̂

2

PS
< 0.4

the ratio monotonically increases from f̂V/f̂PS ⇠ 1.5 as m̂
2

PS
decreases. A simple linear

extrapolation yields the ratio in the massless and continuum limit to be f̂V/f̂PS ⇠ 2.1.
Therefore, our numerical results do not support the first KSRF relation: the resulting
values not only depend on the fermion mass, but also become larger in the massless limit.

The second KSRF relation involves mV, fPS, and the on-shell coupling constant gVPP

associated with the decay of a vector meson:

gVPP =
mV

p
2fPS

. (7.2)

In real-world QCD, the mass of ⇢ meson m⇢ ' 775 MeV, expressed in units of the pion
decay constant f⇡, yields roughly m⇢/

p
2f⇡ ⇠ 5.9 [115]. For comparison, we adopt the tree-

level definition for the decay rate of ⇢ meson, �⇢ =
g2⇢⇡⇡

48⇡ m⇢

⇣
1 �

4m2
⇡

m2
⇢

⌘3/2
, and the reference

experimental values �⇢ ' 150 MeV and m⇡ ' 140 MeV. We find g⇢⇡⇡ ' 6.0, which is in
quite good agreement. By evaluating the right-hand side of the second KSRF relation for
the Sp(4) gauge theory, computed with the lightest ensemble and in the massless limit, we
find m̂V/

p
2f̂PS = 5.47(11) and m̂V/

p
2f̂PS = 5.72(18)(13), respectively. By comparing

with the independent measurement of gVPP = 6.0(4)(2) from Section 6, obtained from the
global fit of the EFT, we conclude that the second KSRF relation holds.

It is interesting to compare the right-hand side of the second KSRF relation with other
lattice results available in the literature on SU(N) gauge theories with two fundamental
Dirac fermions. We show the comparison in Fig. 17. For the lightest ensembles available, it
is found that in the continuum limit mV/

p
2fPS ⇠ 8.1(1.2) for SU(2) [45] and mV/

p
2fPS ⇠

5.2(3) for SU(4) [85], respectively. The general trend in SU(N) theories is that the value
of mV/

p
2fPS decreases as N increases, which complies with the expectation that gVPP

decreases in the large-N limit.8 Near the threshold of mPS/mV ⇠ 0.5, the vector meson
mass we find for Sp(4) in the continuum limit lies between the values for SU(3) and SU(4).

8 It is also interesting to investigate the flavour dependence of the ratio mV/
p
2fPS. A recent lattice

study for SU(3) gauge theory coupled to Nf fundamental fermions finds that the ratio is statistically
independent on Nf up to Nf = 6, for which all theories considered are expected to behave in a way
resembling QCD [116]. On the other hand, the ratio could depend on the group representation of the
fermion matter fields. For instance, large-Nc arguments suggest that gVPP / 1/

p
Nc and gVPP / 1/Nc for

single index and two-index fermion representations, respectively. Pioneering lattice results in SU(4) are
consistent with this scaling [85].
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Results: Nf=2 dynamical fundamental Dirac fermions



- Physical quantities relevant to composite Higgs phenomenology

Measurement m̂v/m̂ps m̂ps/f̂ps m̂v/f̂ps m̂av/f̂ps m̂s/f̂ps f̂v/f̂pv
QB1ASM1 1.1924(17) 5.009(14) 5.972(21) 9.74(8) 8.37(22) 1.578(10)
QB1ASM2 1.2629(23) 4.643(12) 5.864(19) 9.83(12) 8.89(9) 1.651(10)
QB1ASM3 1.335(4) 4.326(14) 5.774(25) 9.77(17) 8.76(18) 1.682(14)
QB1ASM4 1.457(8) 3.944(11) 5.75(3) 10.45(21) 9.20(15) 1.778(24)
QB1ASM5 1.545(11) 3.699(12) 5.72(5) 9.4(5) 9.31(25) 1.79(3)
QB1ASM6 1.654(15) 3.401(16) 5.65(5) 10.5(4) 1.835(23)
QB2ASM1 1.2561(13) 4.770(5) 5.991(9) 9.57(9) 8.40(11) 1.621(6)
QB2ASM2 1.3916(21) 4.221(5) 5.874(12) 9.74(14) 8.81(8) 1.701(8)
QB2ASM3 1.4754(27) 3.983(5) 5.877(14) 10.3(4) 9.24(8) 1.770(8)
QB2ASM4 1.587(4) 3.697(5) 5.869(16) 10.53(15) 9.27(15) 1.815(10)
QB2ASM5 1.742(8) 3.325(5) 5.793(25) 10.3(3) 9.91(17) 1.823(16)
QB2ASM6 2.803(7)
QB3ASM1 1.382(3) 4.379(6) 6.053(15) 9.81(13) 8.91(8) 1.652(10)
QB3ASM2 1.463(6) 4.073(7) 5.959(27) 10.09(15) 9.05(7) 1.657(21)
QB3ASM3 1.636(7) 3.704(8) 6.061(28) 10.56(15) 9.48(10) 1.801(16)
QB3ASM4 1.891(15) 3.182(8) 6.02(5) 10.86(21) 1.843(29)
QB4ASM1 1.1884(13) 5.399(9) 6.417(13) 9.35(8) 8.40(5) 1.482(7)
QB4ASM2 1.328(4) 4.644(8) 6.168(20) 9.63(14) 8.67(6) 1.563(15)
QB4ASM3 1.389(4) 4.418(9) 6.139(21) 10.12(7) 8.83(10) 1.611(12)
QB4ASM4 1.504(8) 4.027(8) 6.06(3) 10.10(15) 8.86(14) 1.647(23)
QB4ASM5 1.729(12) 3.516(9) 6.08(5) 10.35(16) 9.93(12) 1.743(28)
QB4ASM6 1.879(19) 3.170(8) 5.96(6) 11.4(4) 1.70(3)
QB5ASM1 1.482(6) 4.165(8) 6.170(29) 10.35(13) 8.98(9) 1.605(16)
QB5ASM2 1.805(28) 3.435(9) 6.20(10) 10.29(20) 1.73(5)

Table 15. Some useful ratios of (quenched) masses and decay constants of mesons made of Dirac
fermions transforming in the antisymmetric representation. In parenthesis we report the statistical
uncertainties.

 transforming in the 2-index antisymmetric representation are considerably larger than
those made of fermions Q transforming in the fundamental representation. Focusing on the
massless limit, we find that the ratio f̂2

av/f̂2

AV
= 2.7 ± 1.1 is the largest, while m̂2

s/m̂2

S
=

1.18 ± 0.13 is the smallest, and the other results are distributed in the range between these
two values. The hierarchy between the pseudoscalar decay constants is important in the
CHM context; we find that f̂2

ps/f̂2

PS
= 1.81±0.04. It is also to be noted that the mass of the

vector states v is larger, but not substantially so, in respect to that of the corresponding V
mesons, with m̂2

v/m̂2

V
= 1.46 ± 0.08.

How much of the above holds true for the dynamical calculations is not known, and
is an interesting topic for future studies. It was shown in Ref. [66] that, by comparing
quenched and dynamical calculations for mesons in the fundamental representation (per-
formed in comparable ranges of fermion mass), and after both the continuum and massless
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in the massless limit

- V-PS-PS coupling

from the Global fit using HLS EFTQCD. The resulting values in the cases of fundamental and antisymmetric fermions are

g�
VPP

= 4.95(21)(8), and g�vpp = 3.80(24)(16), (5.1)

respectively, where the suffix � denotes the result of simultaneous continuum and massless
extrapolations. As shown in Fig. 10, the distributions of this quantity exhibit a regular
gaussian shape, from which we estimate the statistical uncertainty—the numbers in the first
parentheses of Eq. (5.1). The numbers in the second parentheses in Eq. (5.1) denote the
systematic errors of the fits, that we estimated by taking the maximum and minimum values
obtained from the set of data excluding the coarsest ensemble and including/excluding the
heaviest measurements.

The EFT analyses performed in this section is affected by several limitations—in partic-
ular by the quenched approximation and by the comparatively large fermion masses—and
thus one should interpret the results with some caution. Yet, it is interesting to com-
pare the EFT results with phenomenological models, and with available measurements
obtained with dynamical fermions transforming in the fundamental representation. We
first compare the EFT results in Eq. (5.1) with the ones predicted from the KSRF relation,
gVPP = mV/

p
2mPS. We find that the left-hand side is smaller than the right-hand side

of this relation by about 10% and 23%, for the fundamental and antisymmetric represen-
tations, respectively. These discrepancies are larger than the uncertainties associated with
the fits, and might indicate that the KSRF relation does not describe the quenched theo-
ries accurately, particularly in the case of the antisymmetric representation, although this
statement is affected by uncontrolled systematic uncertainties due to the use of the EFT
with such large values of gVPP and gvpp, as well as large fermion masses. We also find that
for the fundamental representation the quenched value of g�

VPP
is smaller by 29% compared

to the dynamical value of g�
VPP

= 6.0(4)(2) [66], yielding again a discrepancy that is signif-
icantly larger than the fit uncertainties. It would be interesting to repeat these tests with
dynamical fermions in the antisymmetric representation, and in general to explore more
directly the low-mass regimes of all these theories, but these are tasks that we leave for
future extensive studies.

6 Conclusions and Outlook

Composite Higgs and (partial) top compositeness emerge naturally as the low-energy EFT
description of gauge theories with fermion matter content in mixed representations of the
gauge group. Motivated by this framework, we are interested in the Sp(4) gauge theory
with Nf Wilson-Dirac fermions Q transforming in the fundamental representation of Sp(4),
as well as nf fermions  in the 2-index antisymmetric representation. For this paper, we
generated lattice ensembles consisting of gauge configurations by means of the HB algo-
rithm, modified appropriately the HiRep code [78], considered the operators OM bilinear in
these fermions (see Table 3 for explicit definitions of the operators), and measured 2-point
Euclidean correlation functions of meson operators on discrete lattices (in the quenched
approximation).
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systematic errors of the fits, that we estimated by taking the maximum and minimum values
obtained from the set of data excluding the coarsest ensemble and including/excluding the
heaviest measurements.

The EFT analyses performed in this section is affected by several limitations—in partic-
ular by the quenched approximation and by the comparatively large fermion masses—and
thus one should interpret the results with some caution. Yet, it is interesting to com-
pare the EFT results with phenomenological models, and with available measurements
obtained with dynamical fermions transforming in the fundamental representation. We
first compare the EFT results in Eq. (5.1) with the ones predicted from the KSRF relation,
gVPP = mV/

p
2mPS. We find that the left-hand side is smaller than the right-hand side

of this relation by about 10% and 23%, for the fundamental and antisymmetric represen-
tations, respectively. These discrepancies are larger than the uncertainties associated with
the fits, and might indicate that the KSRF relation does not describe the quenched theo-
ries accurately, particularly in the case of the antisymmetric representation, although this
statement is affected by uncontrolled systematic uncertainties due to the use of the EFT
with such large values of gVPP and gvpp, as well as large fermion masses. We also find that
for the fundamental representation the quenched value of g�

VPP
is smaller by 29% compared

to the dynamical value of g�
VPP

= 6.0(4)(2) [66], yielding again a discrepancy that is signif-
icantly larger than the fit uncertainties. It would be interesting to repeat these tests with
dynamical fermions in the antisymmetric representation, and in general to explore more
directly the low-mass regimes of all these theories, but these are tasks that we leave for
future extensive studies.

6 Conclusions and Outlook

Composite Higgs and (partial) top compositeness emerge naturally as the low-energy EFT
description of gauge theories with fermion matter content in mixed representations of the
gauge group. Motivated by this framework, we are interested in the Sp(4) gauge theory
with Nf Wilson-Dirac fermions Q transforming in the fundamental representation of Sp(4),
as well as nf fermions  in the 2-index antisymmetric representation. For this paper, we
generated lattice ensembles consisting of gauge configurations by means of the HB algo-
rithm, modified appropriately the HiRep code [78], considered the operators OM bilinear in
these fermions (see Table 3 for explicit definitions of the operators), and measured 2-point
Euclidean correlation functions of meson operators on discrete lattices (in the quenched
approximation).

– 39 –

KSRF relation

Measurement amps afps ams mps L fps L

QB1ASM1 0.6254(4) 0.1249(4) 1.045(28) 15.009(9) 2.997(9)
QB1ASM2 0.5413(4) 0.1166(3) 1.036(10) 12.991(10) 2.798(8)
QB1ASM3 0.4789(4) 0.1107(4) 0.970(20) 11.495(9) 2.657(9)
QB1ASM4 0.4087(5) 0.1036(3) 0.953(16) 9.809(11) 2.487(8)
QB1ASM5 0.3693(5) 0.0998(4) 0.930(25) 8.863(12) 2.396(8)
QB1ASM6 0.3260(5) 0.0958(5) 7.823(13) 2.300(12)
QB2ASM1 0.50776(12) 0.10646(13) 0.894(11) 24.372(6) 5.110(6)
QB2ASM2 0.40809(14) 0.09668(18) 0.851(8) 19.588(7) 4.641(6)
QB2ASM3 0.37047(16) 0.09300(14) 0.860(7) 17.782(8) 4.464(7)
QB2ASM4 0.32896(16) 0.08898(14) 0.824(14) 15.790(8) 4.271(7)
QB2ASM5 0.28241(19) 0.08494(16) 0.842(14) 13.556(9) 4.077(8)
QB2ASM6 0.22727(22) 0.08108(22) 10.909(10) 3.892(10)
QB3ASM1 0.35682(16) 0.08149(13) 0.726(6) 17.127(8) 3.912(6)
QB3ASM2 0.31698(16) 0.07781(13) 0.704(5) 15.215(8) 3.735(6)
QB3ASM3 0.27265(21) 0.07361(18) 0.698(7) 13.087(10) 3.533(8)
QB3ASM4 0.22041(27) 0.06926(19) 10.580(13) 3.325(10)
QB4ASM1 0.44487(15) 0.08239(15) 0.692(4) 21.354(7) 3.945(7)
QB4ASM2 0.33323(16) 0.08239(15) 0.623(4) 15.995(8) 3.444(6)
QB4ASM3 0.30578(19) 0.06921(15) 0.611(7) 14.678(9) 3.322(7)
QB4ASM4 0.26323(18) 0.06536(15) 0.579(9) 12.635(9) 3.137(7)
QB4ASM5 0.21375(20) 0.06080(17) 0.604(7) 10.260(10) 2.918(8)
QB4ASM6 0.18506(25) 0.05838(17) 8.883(12) 2.802(8)
QB4ASM1 0.22454(27) 0.05392(13) 0.484(5) 10.778(13) 2.588(6)
QB4ASM2 0.1666(3) 0.04851(15) 7.999(15) 2.329(7)

Table 13. Masses for flavoured spin-0 (ps and s) mesons, made of Dirac fermions transforming in
the 2-index antisymmetric representations of Sp(4), and decay constant of the PS states. All results
are obtained in the quenched approximation, and presented either in units of the lattice spacing a,
or volume L. In parenthesis we report the statistical uncertainties.

The resulting fit values are reported in Table 17. The numbers in the first and sec-
ond parentheses are the statistical and systematic uncertainties of the fits, respectively.
Once more, we estimate the fitting systematics by taking the maximum and minimum
values obtained from the set of data excluding the coarsest lattices at � = 7.62 and includ-
ing/excluding the heaviest measurements. As in the case of fundamental fermions Q, we
find that for each � value the vector masses in units of the pseudoscalar decay constant
are almost constant over the range of m̂v/m̂ps

>⇠ 1.3—see Table 15. After performing a
simple linear extrapolation of these constants, we find that m̂v/

p
2f̂ps = 4.72(4) in the

continuum limit. A more rigorous, yet compatible, estimate is obtained by making use of
the extrapolated results in Table 17: we find m̂�

v/
p

2f̂�
ps = 4.80(12)(4). The resulting value

of the ratio is smaller than that for the fundamental fermions by 13%.
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f̂2,�

M
L0

f,M
W 0

f,M
�2/Nd.o.f

PS 0.00765(13)(11) 2.101(38)(51) �0.00190(24)(15) 3.1

V 0.0275(12)(4) 0.47(51)(24) 0.0060(18)(4) 1.5

AV 0.031(6)(10) �0.40(18)(25) 0.019(10)(20) 4.2

m̂2,�

M
L0

m,M
W 0

m,M
�2/Nd.o.f

V 0.451(13)(5) 1.86(7)(4) �0.257(20)(6) 0.4

T 0.455(20)(7) 1.81(8)(5) �0.256(31)(9) 0.9

AV 1.14(10)(14) 0.96(14)(18) 0.13(16)(29) 3.8

AT 1.36(9)(13) 0.78(10)(10) �0.19(14)(24) 3.1

S 1.52(9)(4) 0.18(6)(12) �0.14(13)(7) 4.0

Table 10. Results of the fit of the coefficients in Eqs. (4.13) and (4.14), used in the continuum
and massless extrapolations of masses and decay constants of mesons in the quenched simulations
involving Dirac fermions in the fundamental representation. The numbers in parentheses represent,
respectively, statistical and systematic uncertainties due to the fit.

As seen in Table 8, for each given value of � the ratio m̂V/f̂PS is approximately constant
over the mass region m̂V/m̂PS

>⇠ 1.3. From a simple linear extrapolation to the continuum
of these constant vector masses in units of f̂PS, we find that m̂V/

p
2f̂PS = 5.42(5). A

more rigorous, yet compatible, estimate of the massless limit is obtained by taking the
extrapolated results in Table 10, and yields m̂�

V
/
p

2f̂�

PS
= 5.48(9)(4).

4.4 Quenched spectrum: antisymmetric fermions

We turn now our attention to the quenched spectrum of the lightest flavoured mesons
involving the fermions transforming in the antisymmetric representation of Sp(4). We use
the same ensembles listed in Table 2, but the bare masses m0 of the fermions are listed
in Table 11. As with fundamental fermions, we choose the values of am0 to satisfy the
condition of mpsL � 7.5. In the table, we also present the fitting intervals used for the
extraction of the masses and the decay constants of ps, v, av, and s mesons as well as
the resulting values of �2/Nd.o.f . The results for t and at mesons are shown in Table 12.
We apply to the antisymmetric case the same numerical treatment and analysis techniques
used for the fundamental fermions. As in the case of the fundamental representation, we
could not find an acceptable plateau region for some measurements at the smallest fermion
masses, in the cases of v, av and s mesons.

In Table 13, we present the numerical results of ps masses and decay constants, and s
masses, expressed in lattice units. As shown in the table, all the measurements meet the
aforementioned condition mpsL � 7.5. In addition, we find that fpsL � 2.3, which supports
the applicability of low-energy EFT techniques. We show the results of the masses and decay
constants of v and av mesons in Table 14. Furthermore, the meson masses in units of f̂ps
and the ratio f̂v/f̂ps are presented in Table 15. Finally, we present the resulting values of
the masses in lattice units and units of fps for t and at mesons in Table 16. As already seen
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- Quenching affects in mesons interpolated by fundamental bilinear operators 
are 10~30% depending on the observables. 

- Quenching affects in mesons interpolated by antisymmetric bilinear operators 
could be larger. Dynamical simulations are required.

Results: quenched fund. & anti-sym. Dirac fermions
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Figure 2: Top: comparison of
√

dim(R) mρ/ fπ for various models. Bottom: similar comparison of mρ/ fπ

directly, the labeling of the models is the same as at the top. The SU(3) fundamental Nf = 2,3,4,5,6 are in

the chiral-continuum limit [11], the Nf = 8 result is at finite lattice spacing and finite fermion mass [10], the

SU(3) sextet Nf = 2 is at finite lattice spacing and finite fermion mass [7], the SU(N) fundamental quenched

results are at finite lattice spacing in the chiral limit [12], the SU(N) fundamental Nf = 4 are at finite lattice

spacing and finite fermion mass [21, 22], the SU(4) fundamental Nf = 2, sextet Nf = 2 (both are in the sea

simultaneously) results are in the chiral-continuum limit [23], the SU(2) fundamental Nf = 2 is in the chiral-

continuum limit [24, 25], the SU(2) fundamental Nf = 4 is at finite lattice spacing and finite fermion mass

[26] and finally with Sp(4) both the quenched [27] and the fundamental Nf = 2 are in the chiral-continuum

limit [28, 29]. Results at finite lattice spacing and/or finite fermion mass should be interpreted with caution

as they naturally contain further systematic errors.

√

dim(R) mρ/ fπ where dim(R) is the dimension of the representation. If the fermionic degrees

of freedom scale as O(N2) then of course the usual large-N arguments do not apply.

Starting from SU(2), chiral-continuum results are available with Nf = 2 fermions in the fun-

damental representation [24, 25], Nf = 4 at finite lattice spacing and fermion mass [26], and of

course the pure gauge case. The aforementioned large-N studies led to results with SU(N), still

in the pure gauge case, with N = 2,3,4,5,6,7,17 and the N = ∞ in the chiral limit, at finite lat-

tice spacing [12, 13]. Note that with SU(2) all irreducible representations are real. Increasing the

gauge group to SU(3) we have of course QCD results (or Nature) and the Nf = 2,3,4,5,6 results

of our work in the chiral-continuum limit [11] as well as Nf = 8 at finite lattice spacing and finite

fermion mass [10]. Still with SU(3) results are available with Nf = 2 sextet fermions at finite

lattice spacing and finite fermion mass. Further, SU(4) was studied with two species of fermions
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