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UV completion for composite Higgs models

Before starting lattice simulations

Choose a model wisely before spending years on the simulation

3

3 Applications to Partial Compositeness

We are now in the position of applying the results of the previous section to models that are of

interest to partial compositeness. The candidate models of Partial Compositeness we are interested in

are summarized in Table 1. They were selected [6, 7] from a much longer list [5] as the most promising

ones after imposing a certain amount of criteria that we shall not review here.

Name Gauge group  � Baryon type

M1 SO(7) 5⇥ F 6⇥ Spin  ��

M2 SO(9) 5⇥ F 6⇥ Spin  ��

M3 SO(7) 5⇥ Spin 6⇥ F   �

M4 SO(9) 5⇥ Spin 6⇥ F   �

M5 Sp(4) 5⇥A2 6⇥ F  ��

M6 SU(4) 5⇥A2 3⇥ (F,F)  ��

M7 SO(10) 5⇥ F 3⇥ (Spin,Spin)  ��

M8 Sp(4) 4⇥ F 6⇥A2   �

M9 SO(11) 4⇥ Spin 6⇥ F   �

M10 SO(10) 4⇥ (Spin,Spin) 6⇥ F   �

M11 SU(4) 4⇥ (F,F) 6⇥A2   �

M12 SU(5) 4⇥ (F,F) 3⇥ (A2,A2)   �,  ��

Table 1: The gauge and matter content of the models of interest for Partial Compositeness. The

seemingly haphazard ordering is due to the fact that they were labeled following the cosets they give

rise to (not shown here). Spin denotes the spinorial representation of SO(N), A2 and F denote the

two-index anti-symmetric and fundamental representations. The “baryon” type denotes schematically

where the singlet is to be found (including also the possibility of using the charge conjugates). Note

that, because of ✏abcde, the last model admits baryons of both types.

By choosing X,Y, Z to be either  or � or, for complex irreps, their charge conjugates, one can

obtain the expressions for the respective �-functions to one-loop. In Table 2 we present the full list of

coe�cients A for the twelve models in Table 1, with the understanding that4

�(g) =
g2

16⇡2
A. (10)

4
Although this is unlikely to have caused any trouble, we feel compelled to mention that the preliminary results

presented by one of us (GF) at a few recent seminars used a di↵erent sign convention and incorrectly stated some of the

results for the (3/2, 0) case.
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Our implementation
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The first thing to do  
when simulating a new theory

• Important for simulations and the continuum limit 

• Avoid artefact phases
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Probe the non-thermal phase structure of the lattice theory
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lat

(g
0

, ˆL = 8)

�
lat

(u, ˆL = 6) = ḡ2
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Exploring the non-thermal phase structure

Lattice Sp(2N) Jong-Wan Lee
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Figure 5: Masses and decay constants of pseudoscalar (circle), vector (square) and axial-vector (diamond)
mesons constructed from fermions in the anti-symmetric (red) and fundamental (blue) representation in the
quenched Sp(4) theory at b = 8.0. The lattice volume was 48⇥243.
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Figure 6: Mass scan of the Sp(4) theory with Nf = 3 anti-symmetric Wilson fermions at b = 6.4, 6.5 and
6.6 from left to right, respectively. The red and blue symbols denote the expectation values of the plaquette
hPi obtained from random (hot) and unit (cold) initial configurations on a 84 lattice.

non-zero (symmetric) condensate. Pseudo NG bosons correspond to 2N2
f +Nf � 1 broken gen-

erators which belongs to the coset SU(2Nf )/SO(2Nf ). In terms of Dirac flavors, the NG bosons
are N2

f � 1 mesons in the adjoint representation, and Nf (Nf + 1)/2 diquarks and anti-diquarks in
the symmetric representation. As in the case with fundamental fermions, we focus on the spec-
trum of flavored PS, V, and AV mesons which are degenerate with the corresponding diquark and
anti-diquark states transformed in the same way under the global symmetry in the massless limit.
As dynamical ensembles are not available yet, we calculate the masses and decay constants in the
quenched limit from the same ensembles used for the fundamental fermions in [5]. The results for
b = 8.0 are shown as red symbols in Fig. 5. For a comparison we also present the results for the
quenched spectrum with fundamental fermions denoted by blue symbols. The masses and decay
constants for both representations show similar dependence on the PS meson mass, but the overall
scale is substantially different.

Toward the dynamical simulation with anti-symmetric fermions, the primary task is to search
for any singularity associated with the bulk-phase transition by exploring the bare lattice parameter

5

Sp(4) gauge theory with 3 antisymmetric-repn Wilson-Dirac flavours

stronger bare coupling weaker bare coupling

coarser lattice finer lattice

Lattice Sp(2N) Jong-Wan Lee

space. Using 84 lattices with b = 6.4, 6.5, 6.6, we calculate the expectation values of the plaquette
hPi by varying the bare fermion masses. We focus on the vicinity of the region in which the plaque-
tte values change abruptly. The results are presented in Fig. 6, where red squares and blue circles
are obtained from the random (hot) and unit (cold) initial configurations. We find that hot and cold
results are consistent with each other at b = 6.6, while they are well separated over the range of
m0 = [�1.145,�1.135] at b = 6.4. Such strong hysteresis at small b provides strong evidence for
the existence of a first-order bulk phase transition. We therefore estimate our conservative value of
the phase boundary as b & 6.6 at which the continuum extrapolation can be taken correctly.

5. Conclusion

We presented preliminary results of a first lattice calculation of the meson spectrum for the
Sp(4) gauge theory with two dynamical fundamental Dirac fermions. We first investigated the sys-
tematic effects associated the finite volume and the finite lattice spacing. Although the extrapolation
to the continuum limit has not been carried out yet, our numerical results show consistency with the
low-energy EFT expectations. We also presented the spectrum for the theory with Dirac fermions
in the anti-symmetric representation in the quenched limit. Toward the dynamical simulation, we
explored the phase structure in the lattice parameter space and identified the phase boundary for
the first order bulk phase transition.

Acknowledgements
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References

[1] D.B. Kaplan, H. Georgi and S. Dimopoulos, Phys. Lett. B 136 (1984) 187.

[2] D.B. Kaplan, Nucl. Phys. B 365 (1991) 259-278.

[3] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Phys. Rev. Lett. 115 (2015)
no.2, 021301, [arXiv:1411.3727].

[4] K. Holland, M. Pepe and U.J. Wiese, Nucl. Phys. B 694 (2004) 35, [hep-lat/0312022].

[5] E. Bennett, D. K. Hong, J.-W. Lee, C.-J. D. Lin, B. Lucini, M. Piai and D. Vadacchino, JHEP 03

(2018) 185, [arXiv:1712.04220].

[6] J. Barnard, T. Gherghetta and T.S. Ray, JHEP 02 (2014) 002, [arXiv:1311.6562].

[7] L. Del Debbio, A. Patella and C. Pica, Phys. Rev. D 81 (2010) 094503, [arXiv:0805.2058].

[8] M. Lüscher, JHEP 08 (2010) 071, [arXiv:1006.4518].

[9] M. Lüscher and P. Weisz, JHEP 02 (2011) 051, [arXiv:1101.0963].

[10] S. Borsányi et al., JHEP 09 (2012) 010, [arXiv:1203.4469].

[11] R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, Phys. Rev. D 94 (2016) 094507,
[arXiv:1602.06559].

[12] V. Ayyar et al., Phys. Rev. D 97 (2018) 074505, [arXiv:1710.00806].

6



Probing Sp(4) gauge theories step by step

First calculations performed in the quenched approximation
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Computing the determinants is numerically very demanding

Systematics about 10% in QCD spectrum calculations

Partial quenching as the intermediate step
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lat

(g0
0

, ˆL = 12)

The ✏ regime of the strong sector, m⇡ ⇠ 1/L ⌧ ⇤

dyn

⇣
1

SU(3)[⇢ SO(6)]

Z =

Z
DUD D ¯ e

�Sg [U ]

e

�2

¯ f ( /Df [U ]+m) f
e

�3

¯ a( /Da[U ]+m) a

=

Z
DU det(

/Df [U ] +m)

2

det(

/Da[U ] +m)

3

e

�Sg [U ]

(1)

det(

/Df [U ] +m) = det(

/Da[U ] +m) = 1 (2)

det(

/Df [U ] +m) = 1 (3)

det(

/Da[U ] +m) = 1 (4)

det(Df [U ] +m) = constant (5)

L
latt

= L
cont

+

1X

n=1

cna
nOn+4

(6)

cn

2

I. INTRODUCTION

g
0

am
0

a⇤
dyn

ancn

a ! 0 at fixed mR

chiral limit at fixed a

E
non�int

=

p
m2

⇡ + |~p
1

|2 +
p
m2

⇡ + |~p
2

|2, ~pi =
2⇡
L ~ni, ~ni 2 Z3

~P = ~p
1

+ ~p
2

Measure E⇡⇡
n at total momentum

~P with interactions in finite volume

En,CM

=

q
(E⇡⇡

n )

2 � |~P |2 =

p
sn = 2

p
m2

⇡ + k2

�(q) + �(k) = n⇡, where q = kL/2⇡

�
lat

(u, ˆL = 4) = ḡ2
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Loss of unitarity forbids computations for scattering amplitudes

Monte-Carlo simulations

2

I. INTRODUCTION

g
0

am
0

a⇤
dyn

ancn

a ! 0 at fixed mR

chiral limit at fixed a

E
non�int

=

p
m2

⇡ + |~p
1

|2 +
p
m2

⇡ + |~p
2

|2, ~pi =
2⇡
L ~ni, ~ni 2 Z3

~P = ~p
1

+ ~p
2

Measure E⇡⇡
n at total momentum

~P with interactions in finite volume

En,CM

=

q
(E⇡⇡

n )

2 � |~P |2 =

p
sn = 2

p
m2

⇡ + k2

�(q) + �(k) = n⇡, where q = kL/2⇡

�
lat

(u, ˆL = 4) = ḡ2
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Going dynamical
Marked difference from QCD, what we learned hitherto…
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Figure 1: Gradient flow scales t0 (left panel) and w0 (right panel) as a function of the
bare quark mass am0, for � = 7.2. Different symbols denote the different definitions of an
action density (plaquette or clover). Different colours denote the reference values chosen
for E0 and W0. The choices of mass and coupling identify the ensembles from Table 1.

3.2 Chiral perturbation theory for gradient flow observables

Figure 1 shows that the scales
p

8t0/a and w0/a depend on the fermion mass am0. The
title of this subsection is borrowed from Ref. [84], to reflect the fact that we employ the
EFT treatment suggested in this reference and we apply it to our numerical results. The
EFT treatment assumes that the square root of the flow scale t0 is much smaller than the
Compton wavelength of the pseudoscalar meson.

Following [84], we use the leading order (LO) relation in the chiral expansion m2
PS =

2Bm
f

(where m
f

is the fermion mass), to write the next-to-leading-order (NLO) result for
the GF scale wNLO

0 as

wNLO
0 (m2

PS

) = w�

0

✓
1 + k1

m2
PS

(4⇡fPS)2

◆
, (3.7)

where w�

0 is the GF scale and fPS is the pseudoscalar decay constant, both defined in the
chiral limit. It is convenient to rescale this expression by writing

wNLO
0 (m2

PS

)/a = (1 +

˜k1m̂
2
PS

)w�

0 /a, (3.8)

where ˜k1, w�

0 /a and m̂PS = w0 mPS are dimensionless parameters1. We also find it con-
venient to report here on the extraction of the constants ˜k1 and w�

0 from the dynamical
1The difference between w0 mPS and w�

0 mPS is a sub-leading effect, which would appear at next-to-
next-to-leading order (NNLO).
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This is making the continuum extrapolation more involved…
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fermions too heavy?

Going dynamical



Chiral-continuum extrapolation

Recall the expression of a lattice theory:

Use of EFT for these two extrapolations simultaneously
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Spurion analysis with

Simultaneous expansions in fermion mass and lattice spacing



Status of unquenched calculations

Published results of low-lying meson spectrum for

and
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and

See Jong-Wan Lee’s talk for more details 

2

I. INTRODUCTION

g
0

am
0

a⇤
dyn

ancn

a ! 0 at fixed mR

chiral limit at fixed a

E
non�int

=

p
m2

⇡ + |~p
1

|2 +
p
m2

⇡ + |~p
2

|2, ~pi =
2⇡
L ~ni, ~ni 2 Z3

~P = ~p
1

+ ~p
2

Measure E⇡⇡
n at total momentum

~P with interactions in finite volume

En,CM

=

q
(E⇡⇡

n )

2 � |~P |2 =

p
sn = 2

p
m2

⇡ + k2

�(q) + �(k) = n⇡, where q = kL/2⇡

�
lat

(u, ˆL = 4) = ḡ2
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What next 

In terms of Monte-Carlo simulations

In terms of observables to compute

Multi-representation dynamical simulations
Run at smaller fermion masses

Spectrum of excited-state mesons and the top partner 
Four-fermion operator matrix elements of Goldstone

Resonance masses and decay widths
Anomalous dimension of the top partner: conformal window? 

Inputs for the Higgs potential



The challenge ahead  
for dynamical simulations

The Berlin Wall 

Cost of dynamical fermion simulations

Panel discussion on Lattice 2001 in Berlin (”Berlin Wall plot”)

Estimated cost to generate 1000 independent fermion configurations

Impossible to reach the domain of physical m⇡

Marina Marinković (HU Berlin) Advances in the HMC algorithm 10 May, 2012 8 / 23

Physical observables and the cost to calculate them

𝒪 =
1
𝒵
න
𝑓𝑖𝑒𝑙𝑑𝑠

𝒪𝑒−𝑆

Fall of the “Berlin Wall”

𝐶 ∝
𝑚𝜋

𝑚𝜌

−𝑧𝜋
𝐿𝑧𝐿𝑎−𝑧𝑎

𝑧𝜋 = 6, 𝑧𝐿 = 5, 𝑧𝑎 = 7

2006

Recent 
picture

Improve the fermion action, use more sophisticated algorithm…



Back-up slides



Scale setting

• Converting from lattice to “physical” units. 

• For extrapolating to the continuum limit. 

• Modern popular method: the gradient flow.

Determining the lattice spacing
The Gradient Flow

• “Diffusion” of the gauge fields:

                                                                             

• The radius of diffusion is 

• Local operators are also diffused.

J
H
E
P
0
8
(
2
0
1
0
)
0
7
1

where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;

differentiation with respect to the “flow time” t is abbreviated by a dot). Evidently, for

increasing t and as long as no singularities develop, the flow equation (1.1) drives the

gauge field along the direction of steepest descent towards the stationary points of the

Yang-Mills action.

In lattice QCD, the simplest choice of the action of the gauge field U(x, µ) is the Wilson

action [1]

Sw(U) =
1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)

where g0 is the bare coupling, p runs over all oriented plaquettes on the lattice and U(p)

denotes the product of the link variables around p. The associated flow Vt(x, µ) of lattice

gauge fields (the “Wilson flow”) is defined by the equations

V̇t(x, µ) = −g2
0 {∂x,µSw(Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ), (1.4)

in which ∂x,µ stands for the natural su(3)-valued differential operator with respect to the

link variable Vt(x, µ) (see appendix A). The existence, uniqueness and smoothness of the

Wilson flow at all positive and negative times t is rigorously guaranteed on a finite lat-

tice [2]. Moreover, from eq. (1.4) one immediately concludes that the action Sw(Vt) is a

monotonically decreasing function of t. The flow therefore tends to have a smoothing effect

on the field and it is, in fact, generated by infinitesimal “stout link smearing” steps [3].

The Wilson flow previously appeared in ref. [4] in the context of trivializing maps of

field space. Familiarity with this paper is not assumed, but some mathematical results

obtained there will be used here again. An important goal in the following is to find out

whether the expectation values of local observables constructed from the gauge field at

positive flow time can be expected to have a well-defined continuum limit. Evidence for

the existence of the limit is provided by performing a sample calculation to one-loop order

of perturbation theory directly in the continuum theory, using dimensional regularization,

and through a numerical study of the SU(3) gauge theory at three values of the lattice

spacing. Two applications of the Wilson flow are then discussed, one concerning the scale-

setting in lattice QCD and the other the question of how exactly the topological (instanton)

sectors emerge when the lattice spacing goes to zero.

2 Properties of the Wilson flow at small coupling
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where Aµ is the fundamental gauge field in QCD (see appendix A for unexplained notation;
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1

g2
0

∑

p

Re tr{1 − U(p)}, (1.3)
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and so on. In particular, in D dimensions the leading-order equation implies

Bµ,1(t, x) =

∫

dDy Kt(x − y)Aµ(y), (2.11)

Kt(z) =

∫

dDp

(2π)D
eipze−tp2

=
e−z2/4t

(4πt)D/2
, (2.12)

which shows explicitly that the flow is a smoothing operation. More precisely, the gauge

potential is averaged over a spherical range in space whose mean-square radius in four

dimensions is equal to
√

8t.

The higher-order equations (2.7) can be solved one after another by noting that

Bµ,k(t, x) =

∫ t

0
ds

∫

dDy Kt−s(x − y)Rµ,k(s, y). (2.13)

Recalling eqs. (2.9),(2.10), it is clear that this formula generates tree-like expressions, where

the fundamental field Aµ is attached to the endpoints of the trees.

2.3 Expansion of ⟨E⟩

When the series (2.6) is inserted in

⟨E⟩ =
1

2
⟨∂µBa

ν∂µBa
ν − ∂µBa

ν∂νBa
µ⟩ + fabc⟨∂µBa

νBb
µBc

ν⟩ +
1

4
fabef cde⟨Ba

µBb
νB

c
µBd

ν⟩, (2.14)

a sequence of terms of increasing order in g0 is obtained. The lowest-order term is

E0 =
1

2
g2
0⟨∂µBa

ν,1∂µBa
ν,1 − ∂µBa

ν,1∂νB
a
µ,1⟩ (2.15)

and the terms at the next order are

E1 = g3
0f

abc⟨∂µBa
ν,1B

b
µ,1B

c
ν,1⟩, (2.16)

E2 = g3
0⟨∂µBa

ν,2∂µBa
ν,1 − ∂µBa

ν,2∂νB
a
µ,1⟩. (2.17)

Each of these terms is a power series in the gauge coupling, which may be worked out by

expressing the coefficients Bµ,k(t, x) through the fundamental field Aµ(x) and by expanding

the correlation functions of the latter using the standard Feynman rules.

In practice it is advantageous to pass to momentum space by inserting the Fourier

representations

Ba
µ,1(t, x) =

∫

p
eipxe−tp2

Ãa
µ(p), (2.18)

Ba
µ,2(t, x) = ifabc

∫ t

0
ds

∫

q,r
ei(q+r)xe−s(q2+r2)−(t−s)(q+r)2

×
{

δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ

}

Ãb
σ(q)Ãc

λ(r), (2.19)
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Yang–Mills gradient flow M. Lüscher

Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and  n in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+  n)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density  uu+  dd of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

Figure taken from M.Luscher, Lattice 2013

cΤ " 0.150

L!a " 6

NDP fit of the clover coupling with Ndeg " 10

0.05 0.10 0.15 0.20 0.25
0
1
2
3
4
5
6
7

u0

u l
at
t

cΤ " 0.300

L!a " 6

NDP fit of the clover coupling with Ndeg " 10

0.05 0.10 0.15 0.20 0.25
0
1
2
3
4
5
6
7

u0

u l
at
t

cΤ " 0.350

L!a " 6

NDP fit of the clover coupling with Ndeg " 10

0.05 0.10 0.15 0.20 0.25
0
1
2
3
4
5
6
7

u0

u l
at
t

cΤ " 0.400

L!a " 6

NDP fit of the clover coupling with Ndeg " 10

0.05 0.10 0.15 0.20 0.25
0
1
2
3
4
5
6
7

u0

u l
at
t

cΤ " 0.450

L!a " 6

NDP fit of the clover coupling with Ndeg " 10

0.05 0.10 0.15 0.20 0.25
0
1
2
3
4
5
6
7

u0

u l
at
t

cΤ " 0.500

L!a " 6

NDP fit of the clover coupling with Ndeg " 10

0.05 0.10 0.15 0.20 0.25
0
1
2
3
4
5
6
7

u0

u l
at
t

J
H
E
P
1
0
(
2
0
1
3
)
0
0
8

i.e., to leading order the Wilson flow is the heat flow. We also observe that di↵erent

momentum modes do not couple to each other at this order. Together with the fact that

the zero momentum mode B0(0, x0, t) does not contribute to the observable of interest,

E(t) = 1
4Gµ⌫

G

µ⌫

, we can safely neglect the special treatment that the boundary conditions

of the zero momentum mode B0(0, x0, t) would otherwise require in the following discussion.

We have to solve the heat equation respecting the boundary conditions (2.14). This is

easily done by using appropriate heat kernels

B̃

k,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

D(x0, x
0
0, t)Ãk

(p, x00) , (2.19a)

B̃0,1(p, x0, t) = e

�p

2
t

Z

T

0
dx00K

N (x0, x
0
0, t)Ã0(p, x

0
0) (p 6= 0) . (2.19b)

Since the boundary conditions of the field B̃

µ,1(p, x0, t) are inherited from the boundary

conditions of the heat kernels, we have to choose them with the correct boundary condi-

tions. Heat kernels with either Dirichlet (KD(x, x0, t)) or Neumann (KN (x, x0, t)) boundary

conditions can be constructed from the basic periodic (KP (x, x0, t)) heat kernel in [0, L]

given by

K

P (x, x0, t) =
1

L

X

p

e

�p

2
t

e

ıp(x�x

0)
,

✓

p =
2⇡n

L

; n 2 Z
◆

. (2.20)

Explicit expressions are given in appendix B.

Our observable, the energy density hE(t, x0)i, has an expansion in powers of g0. The

leading contribution is given by

E0(t, x0) = g

2
0

2
h@

µ

B

a

⌫,1@µB
a

⌫,1 � @

µ

B

a

⌫,1@⌫B
a

µ,1i . (2.21)

We are going to split the computation in two parts, one involving only the spatial compo-

nents of G
µ⌫

, and the other involving the mixed time-space components of G
µ⌫

Es

0(t, x0) =
g

2
0

2
h@

i

B

a

k,1@iB
a

k,1 � @

i

B

a

k,1@kB
a

i,1i , (2.22)

Em

0 (t, x0) =
g

2
0

2
h@0Ba

k,1@0B
a

k,1 � @0B
a

k,1@kB
a

0,1i . (2.23)

Inserting for instance expression (2.19) into (2.22) we obtain

Es

0(t, x0) = � g

2
0

2L6

X

p,q

e

�t(p2+q

2)
e

ı(p+q)x
Z

T

0
dx00dy

0
0K

D(x0, x
0
0, t)K

D(x0, y
0
0, t)

⇥
h

p

i

q

i

hÃa

k

(p, x00)Ã
a

k

(q, y00)i � p

i

q

k

hÃa

i

(p, x00)Ã
a

k

(q, y00)i
i

. (2.24)

The final result is obtained inserting the SF gluon propagator [31, 32]. Since our observable

is invariant under gauge transformations of the A
µ

(x) field we will use the Feynman gauge,

where the expression for the gluon propagator turns out to be more easy (for additional

details see appendix C).3

hÃa

i

(p, x0)Ã
b

k

(q, y0)i = L

3
�

ab

�

ik

�

p,�q

1

T

X

p0

s

p0(x0)sp0(y0)

p2 +
�

p0
2

�2 +O(g20) . (2.25)

3
We have checked that the result is independent of the gauge choice.
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the fields over a region of radius
p
8t. The somewhat surprising result of [18, 27] is that

correlation functions made of this smoothed field have a well-defined continuum limit.

In particular the energy density in SU(N) Yang-Mills theory in infinite volume has the

perturbative behavior

hE(t)i = 1

4
hG

µ⌫

G

µ⌫

i = 3(N2 � 1)g2MS

128⇡2
t

2
(1 + c1g

2
MS +O(g4MS)) . (2.3)

At a scale µ = 1/
p
8t, c1 is a numerical constant and gMS(µ) is the renormalized coupling

in the MS scheme. Therefore one can define a running coupling constant ↵(µ) from

t

2hE(t)i = 3(N2 � 1)

32⇡
↵(µ) . (2.4)

These expressions are valid in infinite volume. What about the Schrödinger Functional?

The computation is completely analogous, but we have to impose the correct boundary

conditions to the gauge fields. As we have mentioned in the SF gauge fields are restricted

to a box of dimensions L

3 ⇥ T . They are periodic in the three spatial directions and the

spatial components have Dirichlet boundary conditions at x0 = 0 and x0 = T . We are

going to work exclusively with zero boundary fields, which means

B

µ

(x+ k̂L, t) = B

µ

(x, t) , (2.5)

B

k

(x, t)|
x0=0,T = 0 . (2.6)

The flow equation (2.1) has to be solved maintaining these boundary conditions at all flow

times t. To apply the idea of finite-size scaling, as has previously been done in [23] in a

periodic box, one simply has to run the renormalization scale with the size of the finite

volume box given by L via

µ =
1p
8t

=
1

cL

. (2.7)

Here c is a dimensionless constant that represents the fraction of the smoothing range over

the total size of the box. In this way the flow coupling will not depend on any scale other

than L. The renormalization scheme will depend on the values of c, ⇢ = T/L and1 x0/T

g

2
GF(L) = N�1(c, ⇢, x0/T )t

2hE(t, x0)i
�

�

�

t=c

2
L

2
/8
, (2.8)

where N�1(c, ⇢, x0/T ) will be computed in the next section in order to ensure

g

2
GF = g

2
0 +O(g40) . (2.9)

2.2 Continuum

Our computation follows the lines of [27]. First we consider the modified flow equation

dB
µ

dt
= D

⌫

G

⌫µ

+ ↵D

µ

@

⌫

B

⌫

, B

µ

(x, 0) = A

µ

(x) . (2.10)

1
Note that in the SF the boundary conditions break the invariance under time translations. Therefore

hE(t, x0)i will depend explicitly on x0.
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To study the gradient flow in a field theory, one first adds an extra dimension, called flow

time and denoted by t, that can be regarded as the renormalisation scale. An important
point articulated by Lüscher is that a field theory defined initially with a cut-off can be
renormalised at non-vanishing flow time. In addition, choosing carefully the bulk equation
governing the gradient flow, the theory does not generate new operators along the flow time
(counter-terms), keeping the renormalisation of the five-dimensional theory simple.4

The Yang-Mills gradient flow of the gauge field Bµ(t, x) is implemented via the equation

dBµ(t, x)

dt
= DµGµ⌫(t, x) , with Bµ(t, x)|t=0

= Aµ(x), (4.1)

where Gµ⌫ is the field strength tensor associated with Bµ(t, x), Dµ = @µ + [Bµ, ·] the
corresponding covariant derivative, and Aµ(x) the initial gauge field in the four-dimensional
theory. Noticing that Eq. (4.1) describes a diffusion process, the flow time t therefore has
length-dimension two. It has been shown that to all orders in perturbation theory, any gauge
invariant composite observable constructed from Bµ(t, x) is renormalised at t > 0 [58]. In
particular, Lüscher demonstrated that the action density can be related to the renormalised
coupling, ↵(µ), at the leading order in perturbation theory through

↵(µ) = k↵t2hE(t)i ⌘ k↵E(t) , (4.2)

with µ =

1p
8t

, and

E(t) = �1

2

Tr(Gµ⌫Gµ⌫) . (4.3)

where the dimensionless constant k↵ is analytically computable [57]. Equation (4.2) can
actually serve as the definition of a renormalisation scheme. This scheme is now called the
gradient-flow (GF) scheme. Furthermore, since t2hE(t)i ⌘ E is proportional to the GF-
scheme coupling, this quantity can be used to set the scale. In other words, if one imposes
the condition,

E(t)|t=t0 = E
0

, (4.4)

where E
0

is a constant that one can choose, then
p

t
0

should be a common length scale,
assuming lattice artefacts are under control. In practice, one measures

p
t
0

in lattice units.
That is, one computes

p
t
0

/a ⌘
p

ˆt
0

. This allows the determination of the ratio of lattice
spacings from simulations performed at different values of the bare coupling.

It is worth mentioning that the diffusion radius in Eq. (4.1) is
p

8t, and it is convenient
to define the ratio

c⌧ =

p
8t/L, (4.5)

where L is the lattice size.
Given that the right-hand side of Eq. (4.1) is the gradient of the Yang-Mills action, the

most straightforward way to latticise Eq. (4.1) is5

@Vµ(t, x)

@t
= �g2

0

n

@x,µS(flow)

latt

[Vµ]

o

Vµ(t, x), Vµ(0, x) = Uµ(x), (4.6)

4
See Ref. [59] for a choice of the flow equation that induces the need for extra care of renormalisation in

the �4
scalar field theory.

5
The precise meaning of the Lie-algebra valued derivative @

x,µ

is given in Ref. [57].
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where Gµ⌫ is the field strength tensor associated with Bµ(t, x), Dµ = @µ + [Bµ, ·] the
corresponding covariant derivative, and Aµ(x) the initial gauge field in the four-dimensional
theory. Noticing that Eq. (4.1) describes a diffusion process, the flow time t therefore has
length-dimension two. It has been shown that to all orders in perturbation theory, any gauge
invariant composite observable constructed from Bµ(t, x) is renormalised at t > 0 [58]. In
particular, Lüscher demonstrated that the action density can be related to the renormalised
coupling, ↵(µ), at the leading order in perturbation theory through
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actually serve as the definition of a renormalisation scheme. This scheme is now called the
gradient-flow (GF) scheme. Furthermore, since t2hE(t)i ⌘ E is proportional to the GF-
scheme coupling, this quantity can be used to set the scale. In other words, if one imposes
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. This allows the determination of the ratio of lattice
spacings from simulations performed at different values of the bare coupling.
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to define the ratio
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Figure 5. The Wilson flow functions E(t) in Eq. (4.2) (left panel) and W(t) in Eq. (4.7) (right
panel) for Nf = 2, � = 6.9, m = �0.90 and L = 12, as a function of the flow time t, computed by
using the methods described in Sec. 4.1.

where Vµ(t, x) is the gauge link at flow time t, and S(flow)

latt

is a lattice gauge action. Notice
that S(flow)

latt

does not have to be the same as the gauge action used in the Monte Carlo
simulations. In this work, we employ the Wilson flow where S(flow)

latt

is the Wilson plaquette
action.

The gradient flow serves as a smearing procedure for the gauge fields. This means the
larger the flow time, the smoother the resultant gauge configurations will be. In other words,
the larger the flow time is, the smaller the ultraviolet fluctuations of flown observables. On
the other hand, it also means the gauge fields becomes more extended objects as the flow
time grows. This results in longer autocorrelation time, and makes the statistics worse.
Furthermore, having c⌧ > 0.5 can lead to significant finite-volume effects. These are issues
one would have to consider carefully when choosing a value for the constant E

0

in Eq. (4.4).
The action density E(t) at non-vanishing flow time is obtained from the diffusion process

in Eq. (4.6), starting from the bare gauge fields. To further reduce the cut-off effects in the
scale-setting procedure, an alternative quantity was proposed in Ref. [60]. Define

W(t) ⌘ t
dE(t)

dt
. (4.7)

Then the scale can be set by
W(t)|t=w2

0
= W

0

, (4.8)

where W
0

is again a dimensionless constant that one can choose.
On the lattice, the calculation of E(t) depends on a definition of Gµ⌫ , for which a variety

of choices are available. The most obvious is to associate it with the plaquette Uµ⌫ ; an
alternative is to define a four-plaquette clover, which has a greater degree of symmetry [57].
In the continuum, all definitions should become equivalent, and at finite lattice spacing
the relative difference between the two decreases at large t. The shape of E(t) at very
small t is dominated by ultraviolet effects, and so differs strongly between the two methods;
this introduces further constraints into the choice of E

0

. Figure 5 shows E(t) and W(t),
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Luscher’s method in a nutshell

1. Elastic scattering phase shift from finite-volume Euclidean field theory 
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2. Fit to the Breit-Wigner form to describe the resonance 
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State of the art calculation in QCD
C. Alexandrou et al., Phys. Rev. D 96 (2017) 034525

amπ

amN
¼ 0.2968ð13Þstat;

amρ

amN
¼ 0.7476ð38Þstatð23Þsys; ð54Þ

in which the lattice scale cancels.
In Fig. 12 we compare our results for the ρ coupling and

mass with the results of previous studies performed by the
CP-PACS collaboration (CP-PACS ’07) [4], the ETMC
collaboration (ETMC ’10) [7], the PACS-CS collaboration
(PACS-CS ’11) [10], Lang et al. (Lang et al. ’11) [9],
the Hadron Spectrum collaboration (HadSpec ’12 and
HadSpec ’15) [12,13], Pellisier et al. (Pellisier et al. ’12)
[11], the RQCD collaboration (RQCD ’15) [14], Guo et al.
(Guo et al. ’16) [17], Bulava et al. (Bulava et al. ’16) [15],
and Fu et al. (Fu et al. ’16) [18]. In the right half of the
figure, we use the values of mπ and mρ in MeVas reported
in each reference. In the left half of the figure, we instead
use the dimensionless ratios amπ=amN and amρ=amN ,
where amπ and amN are the pion and nucleon masses in
lattice units computed on the same ensemble as amρ. The
nucleon masses were obtained from Refs. [69–76].
We find that our value for the coupling gρππ is in good

agreement with previous studies both as a function of mπ
and amπ=amN . Furthermore, it is consistent with the
general finding that gρππ has no discernible pion-mass
dependence in the region between mπ;phys and approxi-
mately 3mπ;phys.
Concerning the results for the ρ mass, the left and right

panels of Fig. 12 show very different behavior. This
discrepancy arises from the different methods used to set
the lattice scale on a single ensemble, which can lead to
misleading conclusions. To avoid the substantial

ambiguities associated with the scale setting, we only
consider the dimensionless ratio amρ=amN in the following
discussion.
The Nf ¼ 2þ 1 results for amρ=amN obtained with

Wilson-Clover-based fermion actions all approximately lie
on a straight line leading to the experimental value (shown
as the filled green circle in Fig. 12). The Nf ¼ 2þ 1 data
points using staggered fermions (Fu et al. ’16) are con-
sistent with that line except for one outlier.
The Nf ¼ 2 results are dispersed around the Nf ¼ 2þ 1

values in both directions. The discrepancies between the
different results could arise from any of several systematic
effects, such as excited-state contamination in the deter-
mination of the ππ spectrum or the nucleon mass, various
potential issues in fitting the data, and discretization
errors which manifest themselves for example in deviations
from the relativistic continuum dispersion relation for the
single-pion energies. Additionally, the Lüscher method
only addresses power-law finite volume effects and does
not take into account the exponentially suppressed finite-
volume effects which are estimated to scale asymptotically
asOðe−mπLÞ. Note that for some of the studies, these can be
as high as Oð10%Þ and it is thus not clear whether the
asymptotic regime is reached. An example for systematics
associated with the pion dispersion relation can be seen in
the CP-PACS ’07 study, where the two different results for
amρ at the same pion mass were obtained using either the
relativistic continuum dispersion relation or a free-boson
lattice dispersion relation. An example of systematic effects
that might be associated with the data analysis can be seen
when comparing the Pellisier et al. ’12 results with the Guo
et al. ’16 results at amπ=amN ≈ 0.3. Both studies used the
same ensemble, but arrive at significantly different values
for the ρ resonance parameters.
Keeping these caveats in mind, it is nevertheless inter-

esting to note that our Nf ¼ 2þ 1 results for both
amρ=amN and gρππ agree well with the recent Nf ¼ 2
results from Guo et al. ’16 at almost the same pion mass.
This suggests that the effects of the dynamical strange
quark are small at mπ ≈ 320 MeV. The HadSpec ‘15 study,
which explicitly included the KK̄ channel in their valence
sector, provides further evidence that the strange quark
does not play a major role in the ρ resonance mass.

VIII. SUMMARY AND CONCLUSIONS

We have presented a (2þ 1)-flavor lattice QCD calcu-
lation of I ¼ 1, P wave ππ scattering at a pion mass of
approximately 320 MeV. The calculation was performed in
a large volume of ð3.6 fmÞ3 × ð10.9 fmÞ and utilized all
irreps of LGðP⃗Þ with total momenta up to jP⃗j ≤

ffiffiffi
3

p
2π
L .

Using a method based on forward, sequential, and stochas-
tic propagators that scales well with the volume, we have
achieved high statistical precision (0.35% for amρ and
2.3% for gρππ).

FIG. 11. Final result of fitting the resonant model BW I to the
spectrum via the t-matrix fit. The gray data points are the results
of the individual phase shift extractions for each energy level, and
are not used in the t-matrix fit.
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