Search for new physics in events with large $b\mbox{-jet}$ multiplicity using the ATLAS detector at the LHC

Hoang Dai Nghia Nguyen

Aix-Marseille-Université, CPPM, Marseille, France

IRN Terascale

July 8th, 2020

Supersymmetry (SUSY) Model

- SUSY relates space-time and internal symmetries
 - Unifies the elementary constituents (fermions) with the interactions they undergo (bosons)
 - Solves conceptual problems of the Standard Model (SM)

 Light top squark → solution to hierarchy problem

$$\Delta m_{H}^{2} = -\frac{6y_{t}^{2}}{16\pi^{2}}\Lambda^{2} + \frac{6y_{t}^{2}}{16\pi^{2}}\Lambda^{2} - \frac{3y_{t}^{2}}{4\pi^{2}}m_{\tilde{t}}^{2}\ln(\Lambda/m_{\tilde{t}}) + \dots$$

Superpotential of MSSM

• The superpotential of MSSM can be separated into two parts:

$$\begin{split} & \boldsymbol{W}_{\boldsymbol{MSSM}} = \tilde{\bar{u}} \mathbf{y}_{\boldsymbol{u}} \tilde{Q} H_{\boldsymbol{u}} - \tilde{\bar{d}} \mathbf{y}_{\boldsymbol{d}} \tilde{Q} H_{\boldsymbol{d}} - \tilde{\bar{e}} \mathbf{y}_{\boldsymbol{e}} \tilde{L} H_{\boldsymbol{d}} + \mu H_{\boldsymbol{u}} H_{\boldsymbol{d}}, \\ & \boldsymbol{W}_{\boldsymbol{R}_{p}} = \frac{1}{2} \lambda^{ijk} L_{i} L_{j} \bar{e}_{k} + \lambda^{'ijk} L_{i} Q_{j} \bar{d}_{k} + \mu^{'i} L_{i} H_{\boldsymbol{u}} + \frac{1}{2} \lambda^{''ijk} \bar{u}_{i} \bar{d}_{j} \bar{d}_{k} \end{split}$$

• New symmetry R-parity:

$$\mathsf{R} = (-1)^{3(\mathsf{B}-\mathsf{L})+2\mathsf{S}} \qquad \overset{\mathsf{B}:}{\mathsf{L}}$$

- B: Baryonic number
- L: Leptonic number
- S: Spin number

Superpotential of MSSM

• The superpotential of MSSM can be separated into two parts:

R

$$\begin{split} W_{MSSM} &= \tilde{\bar{u}} \mathbf{y}_u \tilde{Q} H_u - \tilde{\bar{d}} \mathbf{y}_d \tilde{Q} H_d - \tilde{\bar{e}} \mathbf{y}_e \tilde{L} H_d + \mu H_u H_d, \\ V_{\mathcal{R}_p} &= \frac{1}{2} \lambda^{ijk} L_i L_j \bar{e}_k + \lambda^{'ijk} L_i Q_j \bar{d}_k + \mu^{'i} L_i H_u + \frac{1}{2} \lambda^{''ijk} \bar{u}_i \bar{d}_j \bar{d}_k \end{split}$$

• New symmetry R-parity:

$$= (-1)^{3(\mathsf{B}-\mathsf{L})+2\mathsf{S}}$$

- B: Baryonic number L: Leptonic number
- S: Spin number

Nguyen Hoang Dai Nghia (AMU)

Superpotential of MSSM

• The superpotential of MSSM can be separated into two parts:

$$\begin{split} W_{MSSM} &= \tilde{\bar{u}} \mathbf{y}_u \tilde{Q} H_u - \tilde{\bar{d}} \mathbf{y}_d \tilde{Q} H_d - \tilde{\bar{e}} \mathbf{y}_e \tilde{L} H_d + \mu H_u H_d, \\ W_{\mathcal{R}_p} &= \frac{1}{2} \lambda^{ijk} L_i L_j \bar{e}_k + \lambda^{'ijk} L_i Q_j \bar{d}_k + \mu^{'i} L_i H_u + \frac{1}{2} \lambda^{''ijk} \bar{u}_i \bar{d}_j \bar{d}_k \end{split}$$

• New symmetry R-parity:

$$\mathsf{R} = (-1)^{3(\mathsf{B}-\mathsf{L})+2\mathsf{S}}$$

- B: Baryonic number
- L: Leptonic number
- S: Spin number

R-parity violating (RPV) model

- Violate B or L
- Single sparticle production is possible
- LSP not necessary stable \rightarrow possibility for new signals
- MET not necessarily large

- Many constraints on SUSY
 searches disappear
- Top squark decays via λ_{332}'' favored by MFV

Search for RPV decay of top squarks pair in events with multi-b-jets

For natural SUSY, a triplet of higssino-like states are LSP $(\tilde{\chi}_2^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$

No leptonic final states can be used for this scenario Search for signal in events with high *b*-tagged jet multiplicity

Top-squark pair production in natural RPV SUSY

• Analysis can be sensitive to values of λ''_{332}

Sara Diglio, Lorenzo Feligioni, Gilbert Moultaka. Stashing the stops in multijet events at the LHC. Phys. Rev., D 96(5)

• For $\lambda_{332}^{\prime\prime}
ightarrow 0$ the produced top squark tends to be long-lived

The LHC and ATLAS detector

Large Hadron collider (LHC)

- Proton-proton (*pp*) collisions at four interaction points
 - 2010-2012: $\sqrt{s} = 7,8 \text{ TeV}$
 - 2015-2018: $\sqrt{s} = 13$ TeV (Run 2)
- Very high instantaneous luminosity
 - 70 pp interactions per bunch-crossing

A Toroidal LHC ApparatuS (ATLAS)

- Multi-purpose detector:
 - Higgs boson physics
 - SM precision measurements
 - New physics searches
- Large pp collisions dataset in Run 2 \sim 140 ${\rm fb}^{-1}$

Overview of particles passage through ATLAS detector

- Electrons: Energy deposition in calorimeter and charged track in ID
- **Photons**: Energy deposition in calorimeter, no track in ID
- Muons: Combined track in ID and MS
- MET: negative vectorial sum of selected physics objects and the soft term
- Jets: Energy deposition in calorimeters and charged tracks in ID
- **b-jets**: jets containing ≥ 1 *b*-hadrons

 \rightarrow ATLAS uses a Multivariate b-tagging algorithm to separate b-jet from light and c-jet

Nguyen Hoang Dai Nghia (AMU)

Signal and background diagrams

Nguyen Hoang Dai Nghia (AMU)

Multijet background esatimation: $\mathrm{TRF}_{\mathrm{MJ}}$ method

- $\bullet~{\bf TRF_{MJ}}$ based on the probability of tagging jet in QCD events
 - Starting from events with the number of *b*-tagged jets $N_b \ge 2$, one can predict the number of multijet events in high jet multiplicities

Multijet background esatimation: $\mathrm{TRF}_{\mathrm{MJ}}$ method

- $\bullet~TRF_{MJ}$ based on the probability of tagging jet in QCD events
 - Starting from events with the number of *b*-tagged jets $N_b \ge 2$, one can predict the number of multijet events in high jet multiplicities

Events pre-selection

- \geq 4 jets with $p_T > 120$ (140) GeV
- additional jets must have $p_{\rm T}>25$ GeV, $|\eta|<2.5$
- \geq 2 *b*-tagged jets
- Events containing leptons are discarded
- Strategy: Counting events in different jet and *b*-tagged jet multiplicity regions
 - SM background is accumulated in low b-tag multiplicity
 - Signal is accumulated in high jet multiplicity

Analysis strategy

• N_j : number of jets, N_b : number of b-tagged jets

Analysis strategy: validation regions

- N_j : number of jets, N_b : number of *b*-tagged jets
- \bullet Validation regions (VR-MJ) based on $C_{\rm mass}~(H_T/M_{\rm jets})$ cut

Validation of $\mathrm{TRF}_{\mathrm{MJ}}$ method in VR-MJ in data

• Number of predicted multijet events with $N_j \ge 6$ and $N_b = 3$ or $N_b \ge 4$

• $C_{\text{mass}}^{\text{max}}$: region dependent upper cut on C_{mass}

• Systematic uncertainties are represented by the blue hatched area

Nguyen Hoang Dai Nghia (AMU)

Analysis strategy: model-dependent test

- N_j : number of jets, N_b : number of *b*-tagged jets
- Signal regions: $N_j \ge 6$ and $N_b \ge 4$

Statistical analysis

• Profile-likelihood fit is performed on 8 SRs

$$\mathcal{L}(N^{\text{data}}|\boldsymbol{\mu}, \boldsymbol{\theta}) = \prod_{i \in bins} \mathcal{P}(N_i^{\text{data}} | \boldsymbol{\mu}s_i(\boldsymbol{\theta}) + b_i(\boldsymbol{\theta})) \Gamma(\boldsymbol{\theta}_i^{\text{stat}}) \prod_{k \in \text{systematics}} \mathcal{N}(\boldsymbol{\theta}_{ki}^{\text{sys}})$$

Analysis strategy: model-independent test

- N_j : number of jets, N_b : number of b-tagged jets
- Discovery regions: $(N_j \ge 8, N_b \ge 5)$ and $(N_j \ge 9, N_b \ge 5)$

Model-independent results

• Fitted background yields in $(N_j \ge 8, N_b \ge 5)$ and $(N_j \ge 9, N_b \ge 5)$ signal regions

	(N_j, N_b)		
Process	≥8,≥5	≥9,≥5	
Multijet	200 ± 40	123 ± 20	
$t\bar{t} + \ge 1c$	0.6 ± 0.6	0.29 ± 0.33	
$t\bar{t} + \ge 1b$	26 ± 20	20 ± 15	
$t\bar{t} + W$	0.11 ± 0.05	0.09 ± 0.04	
$t\bar{t} + Z$	1.4 ± 0.7	0.8 ± 0.7	
Wt channel	0.9 ± 0.8	0.9 ± 1.2	
$t\bar{t}H$	3.7 ± 1.6	2.9 ± 1.4	
Total background	230 ± 40	147 ± 20	
Data	259	179	

- No significant excess observed
- Model-independent limits on the contribution of new phenomena to the signal-region yields are calculated in terms of the total observed cross section

Signal region	$\sigma_{\sf obs}^{95}$ [fb]	$N_{\sf obs}^{95}$	N_{exp}^{95}	$p_0(Z)$
$N_{ m jets} \ge$ 8, $N_{ m b} \ge$ 5	0.76	105	85^{+30}_{-24}	0.24 (0.7)
$N_{ m jets} \geq$ 9, $N_{ m b} \geq$ 5	0.54	75	52^{+20}_{-15}	0.11 (1.2)

Results

Exclusion limits on signal strength $\mu_{\tilde{t}\tilde{t}^*}$ with BR($\tilde{t} \to b\chi^+(\chi^+ \to bbs)$) = 1

Observed (expected) sensitivity up to 950 GeV (1 TeV)

Results

Exclusion limits on signal strength $\mu_{\tilde{t}\tilde{t}^*}$ for \tilde{H} LSP scenario

Observed (expected) sensitivity up to 950 GeV (1 TeV)

Conclusions

- SUSY is an elegant way to relate fermions and bosons and solving many SM shortcomings
 - Light top squark \rightarrow solution to the hierarchy problem
- Extensive program to explore uncovered phase space for RPV models
 - $pp \to \tilde{t}\tilde{t}^* \to bbbs\bar{b}\bar{b}\bar{b}\bar{s}$ have been a blind spot for natural SUSY
- Search for RPV decay of top squarks pair production in 139 fb⁻¹ of ATLAS data:
 - Strategy based on a profile likelihood based fit in different N_{j} and N_{b}
 - Multijet background estimated using TRF_{MJ} method. Validated in data and MC
 - No significant excess is observed
 - Model-independent observed limit on BSM cross-section is 0.54 fb in (≥9j,≥5b)
 - Observed (Expected) 95% CL exclusion limit is set for top squark mass up to 0.95 TeV (1 TeV)
- More information in ATLAS-CONF-2020-016

THANK YOU FOR YOUR ATTENTION