Lennert Thormaehlen Institute for Theoretical Physics Heidelberg IRN TeraScale Webinar 7th July 2020

XENON1T AND HIDDEN PHOTON DM

STELLAR COOLING AS AN ASSET

Based on arxiv:2006.11243 in collaboration with Gonzalo Alonso-Álvarez, Fatih Ertas, Joerg Jaeckel and Felix Kahlhoefer

KEY QUESTIONS

- 1. Can hidden photon DM explain the XENON1T excess?
- 2. Would such a hidden photon be a viable DM candidate?
- 3. How does it compare with stellar cooling limits and hints?

Setup

• HP kinetically mixed with SM photon:

$$\mathcal{L} \supset -\frac{1}{2} \epsilon F^{\mu\nu} X_{\mu\nu} - \frac{1}{2} m_X^2 (X^{\mu})^2 - j^{\mu} A_{\mu}$$

• After a suitable field redefinition:

$$\mathcal{L} \supset -\frac{1}{2}m_X^2 (X^\mu)^2 - j^\mu (A_\mu - \epsilon X_\mu)$$

• HP couples to SM electromagnetic current

HIDDEN PHOTONS IN XENON1T

• Absorption rate of non-relativistic HPs in xenon

$$R = \epsilon^2 \frac{\rho_{DM}}{m_X} \frac{\sigma_\gamma}{m_N}$$

• Monoenergetic peak is smeared out by the detector resolution

HIDDEN PHOTONS IN XENON1T

• Best fit: 10^{-14} $m_X = 2.8 \text{ keV}$ $\epsilon = 8.6 \times 10^{-16}$ **XENON1T** Constraint ₩ 10⁻¹⁵ • Global significance: $\sim 2 \sigma$ Lower significance than solar axion in large parts 68% C.L. --- 95% C.L. due to look-elsewhere 10^{-161} 10⁰ Results confirmed by m_X [keV]

10¹

[arXiv:2006.13159, 2006.13929, 2006.14521]

6

HIDDEN PHOTONS AS DM

- Light DM cannot be produced thermally
- Non-thermal production mechanisms:
 - a) Misalignment (large initial field values) [arXiv:1201.5902]
 - b) Fluctuations during inflation [arXiv:1504.02102]

 $m_X = 2.8 \text{ keV}, \quad H_I \sim 7 \times 10^{11} \text{ GeV}$

Higher inflation scales possible by including non-minimal coupling to gravity

 $\mathcal{L} \supset \frac{1}{6} \kappa R(X^{\mu})^2, \quad \kappa \sim 0.6 - 0.8$ $m_X = 2.8 \text{ keV}, \quad H_I \sim 3 \times 10^{12} \text{ GeV} - 10^{14} \text{ GeV}$

Strong small scale fluctuations expected!

c) Decay product of e.g. axion field, dark Higgs, inflaton, cosmic strings etc.

[arXiv:1810.07188]

[arXiv:1905.09836]

HIDDEN PHOTONS AS DM

- Stability is ensured
- Dominant decay channels:

a) $X \rightarrow \gamma \gamma \gamma$

$$\Gamma_{X\to 3\gamma} = \frac{17\alpha^4 \epsilon^2}{11664000\pi^3} \frac{m_X^9}{m_e^8} \simeq 1.4 \times 10^{-29} \,\mathrm{Gyr}^{-1} \left(\frac{m_X}{2.8 \,\mathrm{keV}}\right)^9 \left(\frac{\epsilon}{10^{-15}}\right)^2$$

[arXiv:0811.0326]

b) $X \rightarrow \nu \nu$

$$\Gamma_{X \to \nu\bar{\nu}} = \frac{\alpha \epsilon^2}{8 \cos^4 \theta_W} \frac{m_X^5}{m_Z^4} \simeq 2 \times 10^{-28} \,\mathrm{Gyr}^{-1} \left(\frac{m_X}{2.8 \,\mathrm{keV}}\right)^5 \left(\frac{\epsilon}{10^{-15}}\right)^2$$

[arXiv:1912.12152]

 \implies A hidden photon of 2.8 keV is a viable DM candidate!

8

Stellar Cooling

- Stars can produce new light bosons in large abundances
- Stellar cooling supplies strong constraints **but** anomalous cooling is observed

Figure taken from Giannotti, Irastorza, Redondo, Ringwald 2015 [arXiv:1512.08108]

HIDDEN PHOTONS AND HB STARS

• Transverse modes resonantly convert to HPs if

 $\omega_P \sim m_X$

• For significant cooling, resonance condition needs to be fulfilled in some spherical shell inside HB stars.

HIDDEN PHOTONS AND HB STARS

 Hidden photon might explain HB anomaly and XENON1T excess

HIDDEN PHOTONS AND HB STARS

 Hidden photon might explain HB anomaly and XENON1T excess

- So far: Axion hint translated to hidden photons
- The hint from the *R*parameter could be customised for HPs.

Bounds and Hints from: [arxiv:1512.08108] & [arxiv:1412.8379]

CONCLUSION

- A hidden photon of 2.8 keV could explain the XENON1T excess.
- Such a particle could constitute all of the dark matter.
- Additional motivation comes from the HB cooling anomaly
- To-Do's:
 - Evaluate HB hint in detail for hidden photons
 - Investigate the time dependence of the signal