

XENON1T : The Results

Observation of excess electronic events in XENON1T arXiv : 2006.09721

Julien Masbou Subatech – Université de Nantes

on behalf of the XENON Collaboration + X. Mougeot

XENON Collaboration

XENON1T facility

Water shield: deionized water as passive radiation shield Muon veto: Active muon veto against muon induced neutrons (84 PMTs)

Cryogenics: Stable conditions (3.2 LXe) **Purification:** LXe flow through getters, remove impurities

DAQ: Each channel has its own threshold, Flexible software algorithms **Readout:** Up to 300MB/s for high rate calibrations

ReStoX: Emergency recovery up to 7.6 tons of LXe **Passive:** No active cooling required to keep Xe contained

Kr Distillation: Remove Kr from system during fill or online **Rn Distillation:** Initial tests show promising reduction for Rn

Dual phase TPC: principle

Uses of S1 & S2 with data

- "Standard" nuclear recoil WIMPs models:
- SI WIMP-nucleon interactions
- SD WIMP-nucleon interactions
- Low mass WIMPS
- · ...
- DM-electron scattering:
- Solar axions
- Axion-like particles (ALPs)

- Leptophilic models:
- Annual modulation
- Exotic models: WIMP axial-vector coupling to electrons,

mirror dark matter, luminous dark matter

- ..
- Neutrino physics:
- 0vββ decay with 136Xe
- 2v double electron capture with 124Xe

XENON1T previous results - main publications

Focus on the excess

Lowest background rate ever achieved in this energy range!

Probabilities

Focus on the excess

Energy reconstruction

Mismodeling

220 Rn calibration data validates our model

To explain the excess, you need:

- a large systematic
- that is absent when we calibrate

Excess is not at our threshold fall-off

Persists if we would:

.. double the analysis threshold post-hoc

- ... fix efficiency at +-1 sigma
- ... use different software versions
- ... do a (cS1, cS2) profile likelihood

Mismodeling

Focus on the excess

Lowest background rate ever achieved in this energy range!

Detection Volume

[1] Pass through > km of rock

- Cosmic Rays
- Neutrinos
- Dark Matter

- Ambient radioactivity

[2] Pass through cm of metal and xenon

- Experiment radioactivity

- Internal radioactivity
 ²²²Rn et ⁸⁵Kr
- Activation (after neutron generator data)

²¹⁴Pb, ⁸⁵Kr, ¹³⁶Xe, ¹³³Xe, ¹²⁴Xe (!) Accounted for, different energies

¹²⁷Xe, ³⁷Ar $t_{1/2} \sim month$, too short > 6L day air leak not seen

. . .

Tritium

Focus on the excess

Lowest background rate ever achieved in this energy range!

Tritium hypothesis

From purification and handling, this component seems unlikely.

(note: tritium from activation While underground is negligible.) atmospheric abundance 3H:H in H2O is 5 - 10 x 10-18 mol/mol * Tritiated molecules can emanate into LXe target from water and hydrogen in detector materials in the form of HTO and tritiated hydrogen (HT). emanation in equilibrium with removal.

Best-fit gives **60-120 ppb of (H₂O + H₂)** impurities

Our light yield implies O(1) ppb H₂O

HTO emanation seems unlikely based on LXe purity arguments. atmospheric abundance 3H:H in H2O is 5 - 10 x 10-18 mol/mol * Tritiated molecules can emanate into LXe target from water and hydrogen in detector materials in the form of HTO and tritiated hydrogen (HT). emanation in equilibrium with removal.

Best-fit gives 60-120 ppb of (H₂O + H₂) impurities

ΗT

- Assume same abundance HT in H2 as HTO in H2O (no direct measure)
- No direct measure, but good electron lifetime indicates O(0.1 ppb) O2-equivalent impurities

Requires 100x more H2 than other molecules

HT emanation seems unlikely based on LXe purity arguments.

HOWEVER

Many unknowns about tritium in a cryogenic LXe environment

- Radiochemistry, particularly isotopic exchange (formation of other molecules?)
- Diffusion properties of tritiated molecules
- Desorption and emanation
- For HT, no direct measure of either abundance or H2 concentration.

We can neither confirm nor exclude the presence of tritium.

- We consider it an hypothesis, but don't include it in the background model.
- Report additional σ results (but not constraints on signal parameters) with tritium included as a background component.

Solar Axion

Julien Masbou, IRN Terascale, webinar, 8th July 2020

Neutrino Magnetic Moment

XENONnT is coming !

It will be interesting to see what XENONnT and others find!

XENONnT will discriminate axions from tritium with ~ few months of data

