
NOTHING WORKS
Lessons Learned from Leading and Maintaining the

Open Source Project Gammapy

Axel Donath - July 23rd
Workshop on Open-Source Software Lifecycle

�1

WHY “NOTHING WORKS”?
➤ When developing software in general we are confronted with the state “nothing works” most of the

time:

➤ We typically spend more time to debug code than to write it

➤ We fix broken CI tests

➤ We find that design choices do not scale or do not work as expected

➤ We find that our software has missing features

➤ We find the performance is not good enough

➤ etc.

➤ Software is never in a 100% final state, but rather undergoes a process of constant improvement.
As we can never avoid bugs, missing features, changing API, design mistakes etc. completely. So the
2nd best thing we can do is to setup a working process for the software that tolerates this
“imperfections” and results in the best possible compromise between user and developer experience

�2

WHAT IS GAMMAPY?

�3

WHAT IS GAMMAPY?

�4

➤ An openly developed Python package for Gamma-Ray astronomy

➤ Started in ~2012 with a set of Python scripts developed for the HESS Galactic Plane Survey
analysis by Christoph Deil and myself

➤ Approximately 8 years of experience in developing and maintaining an open source Python
package and have probably re-written the package already 3 times…:-)

➤ ~120 forks, ~60 contributors

➤ ~13.000 commits

WHAT IS GAMMAPY?

�5

Activitity v0.1TeVPy … v0.10

Contributors

Lines of code

https://www.openhub.net/p/gammapy

https://www.openhub.net/p/gammapy

“COMMUNITY DRIVEN” / OPEN DEVELOPMENT

“Customer / User”“Software product”

“Developer / User”

“Software product”

➤ Not a classical linear “developer -> user” or “company -> customer” relationship

➤ No strict, structural boundary between developers and users

➤ Users know best what they need and deliver it for the benefit of the community

➤ Self organising structure incl. quality insurance, based on “crowd intelligence”

➤ Maybe best understood in a Web 2.0 context? There is no strict boundary between content
creator and consumer…(Youtube / Wikipedia etc.)

�6

“CLASSICAL” SOFTWARE DEVELOPMENT LIFE CYCLE
➤ E.g. “Waterfall model”: a company delivers product to customers / developers

implement software for users

https://en.wikipedia.org/wiki/Waterfall_model

Requirements

Design

Implementation

Testing

Maintenance

Requirements document

Software architecture

Software

�7

https://en.wikipedia.org/wiki/Waterfall_model

“CLASSICAL” SOFTWARE DEVELOPMENT LIFE CYCLE
➤ E.g. “Waterfall model”: a company delivers product to customers / developers

implement software for users

https://en.wikipedia.org/wiki/Waterfall_model

Requirements

Design

Testing

Maintenance

Implementation

Requirements document

Software architecture

Software

Rather static and clumsy process

Not really suitable if:

- there is no classical company /  
customer situation…

- requirements change fast

- new (science) use cases arise

- developer team changes

�8

https://en.wikipedia.org/wiki/Waterfall_model

AGILE SOFTWARE DEVELOPMENT LIFE CYCLE
➤ Constant process of improving the software

➤ Agile development methods
➤ Pair programming

➤ Refactoring

➤ Test driven development

➤ Continuous integration

➤ Sprints

➤ etc.

Te
st
in
g

Backlog Deploy

Requirements

Im
pl
em
en
ta
ti
on Design

Agile process more suited to openly developed software…

“Nothing Works”

https://en.wikipedia.org/wiki/Agile_software_development �9

https://en.wikipedia.org/wiki/Agile_software_development

…implements tests for a large fraction 
of the code “large coverage”

“STATE OF THE ART” OPEN DEVELOPMENT SETUP

�10

…is hosted on an open git server e.g. Github:  
https://github.com/gammapy/gammapy

…uses a continuous integration system  
e.g. Travis-CI or Azure Pipelines

…builds and deploys docs automatically
e.g. on Read the Docs

…has code format standards or uses  
an auto format tool e.g. Black

…has the documentation coupled to 
the source code and uses automatic tools 
e.g. Sphinx to build it

…implements tests and uses 
a testing framework e.g. Pytest

Open software…

CONTRIBUTORS
➤ Approximately 20% of the top contributors

did 80% of the commits (“Pareto” like
distribution, seems to be the case for many
projects…)

➤ Only few long-term contributors (“core
developers”)

➤ Many single time contributors, a handful of
short-term contributors (< 1 year)

➤ Often highly intrinsically motivated
contributors, but often specialised tasks.
Sometimes it’s needed to slow them down…

“Pareto” like distribution

https://www.openhub.net/p/gammapy

�11* # of commits are not necessarily a good way to measure contributions…

*

https://www.openhub.net/p/gammapy

“GITHUB” WORKFLOW
➤ Standard multi-branch git workflow:

➤ Contributors fork a repository

➤ Features are developed in new a branch “on the side”

➤ A pull requests is opened

➤ Every pull requests (PR) is reviewed at least once by more experienced developers 
(lead developers). Sometimes “all fine”, sometime “Here is a number of substantial comments”

➤ Once review comments are implemented and the CI builds pass a PR gets merged

➤ Lesson learned:

➤ Often contributors put too many changes (or possibly unrelated) 
in a single PR. This is hard to review…

➤ Try to ask for small PRs

➤ Using automatic code formatting tools (e.g. Black) can help to 
to get small diffs

➤ Avoid PRs staying open for a long time: chances increase with time, that it will never get merged (merge conflicts etc.)
�12

REQUIREMENTS / DESIGN PROCESS

�13

PEP

APE

“Proposal for enhancing Python”

“Astropy proposal for enhancement”

Requirements Design

https://docs.gammapy.org/0.10/development/pigs/index.html

GAMMAPY “PIG” DOCUMENTS

�14

PEP

PIG
“Proposal for Improving  
Gammapy (PIG)”

APE

Requirements Design

https://docs.gammapy.org/0.10/development/pigs/index.html
https://github.com/gammapy/gammapy/blob/master/docs/development/pigs/pig-005.rst

GAMMAPY “PIG” DOCUMENTS

�15PIGs are useful animals…

PIG

https://docs.gammapy.org/0.17/development/pigs/index.html

Requirements Design

➤ A “PIG” plans a larger contribution with O(10) PRs

➤ Written either by experienced developers or by contributors
& and experienced developers

➤ PIGs go through pull request, discussion and an official
acceptance process

➤ So far ~20 Pigs in Gammapy, 16 accepted and implement
4 withdrawn / rejected.

➤ Lessons learned:

➤ PIGs proved to be very useful in the design process,
lead to better quality code!

➤ Keep PIGs small, often failed when the focus was too
large and tried to solve to many problem at once

➤ In the beginning we also asked non-experienced
developers to write a PIG for their project, which was an
overburden….

https://docs.gammapy.org/0.17/development/pigs/index.html

CODING SPRINTS

�16

Erlangen in July 2019

Madrid in October 2018

Implementation

➤ Meet other developers / contributors in person for ~ 1 week and
work together

➤ Highly recommended!

➤ During pandemic: replaced by a co-working week (less effective but
acceptable…)

➤ Proved to be effective for:

➤ Introducing / teaching new developers

➤ Effective decision taking / discussions

➤ Wrap up work before a release

➤ Enhance the community in general

https://github.com/gammapy/gammapy-meetings/tree/master/coding-sprints

https://github.com/gammapy/gammapy-meetings/tree/master/coding-sprints

CODE PARADIGMS
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

import this

If there is doubt on a design decision, or choice between  
multiple solutions to implement the same feature…ask  
the Zen of Python!

Implementation

�17

CODE PARADIGMS

➤ Code paradigms are helpful…too often forgot in the daily routine

Kent Beck’s directive interpreted:

“Make it work correctly,  
 make the source code clear,  
 make it run quickly…”

Implementation

�18

CODE PARADIGMS

make it simple  
make it simple  
make it simple  
make it simple  
make it simple  
make it simple

➤ Writing simple code is important!

➤ Splitting code into re-usable functions / classes, meaningful variable names etc.

➤ In openly developed projects, there is no “code ownership”, ideally everyone should be able to
understand any piece of code with limited effort

➤ Simple code (in contrast to “spaghetti code”) ensures long term maintainability and modification by
“non experts” for this specific piece of code

➤ “Premature optimization is the root of all evil” is a similar paradigm and equally true…

Let’s make it explicit….
Implementation

�19

OTHER LESSONS LEARNED
➤ Many (non-regular) contributors do not know the whole code base of a project, so they fix problems in the part

of the code, they are working on, even if the problem originates from a completely different position. Take care in the
review process that problems are fixed “up in the hierarchy” and not locally, so that they apply to the whole code
base…

➤ Design mistake: In the beginning we didn’t have a design (PIG) process so many data and models abstractions were
implemented on a single use-case driven basis. Like `CountsSpectrum`, `SkyImage`, `SkyCube` as needed.
Long-term this created a proliferation of classes, non-uniform API and required a long refactoring process of
unification. So don’t restrict dimensionality of data and models unless you know exactly the requirements…

➤ Many people just use the software, but never start contributing. This is mostly fine but often users write again
their own code and prototypes, implementing new features but never share it with others:

➤ Negative interpretation: they are “selfish” taking advantage of other’s work and not giving back to the
community…

➤ Positive interpretation: they are “code shy” so motivate them to make the work public…

➤ And write simple code!

�20

ImplementationState the obvious…?

RELEASE CYCLE Deployment

➤ Rather short release cycle of ~2 months

➤ Ensures continuous progress by working towards “deadlines” regularly

➤ Short cycle of user feedback, design phases and implementation

➤ Found a bit too short for larger development projects…

➤ Requires simple deployment system:

➤ Releases are put on `pypi` (Python package index) (https://pypi.org/project/gammapy/) and Conda

➤ Every Gammapy version is delivered with a new Conda environment file:

$ curl -O https://gammapy.org/download/install/gammapy-0.17-environment.yml

$ conda env create -f gammapy-0.17-environment.yml

$ conda activate gammapy-0.17

1
2
3

�21

https://pypi.org/project/gammapy/
https://docs.gammapy.org/0.10/getting-started.html#install

RELEASE CYCLE Deployment

➤ The short release cycle and simple install system is a reasonable compromise for a package with a non-
stable API between:

➤ 1. desire from contributors to develop the package fast and not spend too much time on backwards
compatibility

➤ 2. and not require users to update every time, only if they are in need for a certain new feature. Using
Conda environments users can keep multiple version at the same time

➤ Currently release process requires manual work so making a release takes ~0.5 day. Plan to
automatise this in future by setting up a release pipeline (e.g. using GitHub Actions)

�22

COMMUNITY EFFORTS AND RELATION TO ORGANISATIONS
➤ Community driven projects are typically independent and live from voluntary contributions.
➤ Currently mostly indirect support by institutions / companies by giving people the time to work on

projects
➤ In case of success of community driven projects, there is a need for long-term maintenance. This

either requires institutional support or creating an organisational structure, which receive funding.
➤ E.g. Astropy, received 900K funding as an organisation from Moore foundation and Space Science

Telescope (JWST) pays software developers to work on Astropy

➤ Open question: How to establish a sustainable collaboration between open source projects and
organisations?

�23
Etc.

CONCLUSIONS
➤ Accepting the state “nothing works” as a normal state, forces one to develop a working process that

allows for “failure” and fast correction of mistakes as well as prevention of mistakes

➤ For Gammapy “Agile” inspired methods worked best so far: GitHub Workflow, code review, coding
Sprints, short release cycles, etc.

➤ Biggest challenge for the “community driven” projects is long-term maintenance and institutional
support

�24

