
Hangar
Git For Your Data

Why hasn’t the open-source ethos translated to datasets?

What is holding back open-source dataset curation?

Acquire Data

Save to Disk

Read File

Decode to
Tensor

Augment
Data

Train Model

Deploy To
Production

Quality Assurance Annotation & Labeling

Exploratory Analysis IO Optimization

Data Workflow

Acquire Data

Save to Disk

Read File

Decode to
Tensor

Augment
Data

Train Model

Deploy To
Production

Early Stage

Late Stage

Data Workflow

Managing Data on Disk is a Pain

• Each are designed to solve a particular problem.

• Each has limitations

• Each can be very complex to setup effectively

Creating a system to track data history is a chore…
It’s not a priority for most people who “use” data

Model / Processing Pipelines

Your Product

Data

How would we build a version control system…

designed for numeric data…

if we started from the ground up?

Design Goals

• Efficiently store n-dimensional arrays.

• Time travel through the history, checkout from any point.

• Ensure integrity of data and history.

• Zero cost branching & merging.

• Built for distribution & collaboration.

• Partially clone / fetch small parts of data from massive dataset.

• Ability to saturate requests from reasonable sized compute clusters.

• Simple to use

Domain Specific Needs
- Large-scale, n-dimensional, dense & sparse arrays

Storage Size Requirements
- No good if size of any dataset repository exceeds

individual developer capabilities (mid-grade laptop /
workstation)

Data Integrity & Provenance
- How to ensure that Data in == Data out for all of history?

No Exceptions.
- How to verify historical record?

Performance Scaling
- Scale from individual laptop to large cluster training DL

models.

Collaboration (Distribution)
- How to branch / diff / merge array data?
- Transfer speed limitations (due to data size)

Problems We Will Face

What do we need?

Some way to store data on disk -----------------------> Storage Backends

Some way to record records and history ------------> Book-Keeping

Some way to interact with repo -----------------------> API

What is a dataset?
A collection of related sets of data pieces which act to describe some meaningful information

Image Category / AnnotationBounding-box

Sample 1

Sample 2

Sample 3

Hangar Data Model

[3][[1, 1], [1, 80]],
[4, 41], [7, 100]]

[[2, 4], [2, 85]],
[1, 11], [6, 120]]

[1][[2, 1], [9, 82]],
[3, 55], [16, 122]]

Sample 4

Image Bounding-box

[[1, 1], [1, 80]],
[4, 41], [7, 100]]

[[2, 4], [2, 85]],
[1, 11], [6, 120]]

[[2, 1], [9, 82]],
[3, 55], [16, 122]]

Category/Annotation

[3]

[1]

A grouping of samples each describing one component of a dataset

Hangar Data Model Column

Image Bounding-box

[[1, 1], [1, 80]],
[4, 41], [7, 100]]

[[2, 4], [2, 85]],
[1, 11], [6, 120]]

[[2, 1], [9, 82]],
[3, 55], [16, 122]]

Category/Annotation

[3]

[1]

Hangar Data Model

Arrayset stored in backend optimized for data of that particular shape / dtype / layout

Arbitrary Backend Selection

What do we need?

Some way to store data on disk -----------------------> Storage Backends

Some way to record records and history ------------> Book-Keeping

Some way to interact with repo -----------------------> API

• Git tree like design

• Content Addressable Storage

• Operates orthogonal to data storage layer

• Enables branching / merging

• Cryptographic hashing algorithm ensures
repo integrity

Book-Keeping Highlights

Image Reference: https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects

What do we need?

Some way to store data on disk -----------------------> Storage Backends

Some way to record records and history ------------> Book-Keeping

Some way to interact with repo -----------------------> API

Role:

• Dump and retrieve arrays to disk
• Verify data integrity on read

Role:

• Record data present in each commit
• Track historical log of all commits and parents
• Store backend locating info locating info

Storage Backends Book-Keeping

Scaling Properties:

• Data in Backends is LARGE
• Stored in systems designed for

massive data at scale.

Scaling Properties:

• Records are very small (tens or bytes each)
• LMDB Under the Hood - single level store,

extremely fast and low profile lookups.

API

Inspired by Git, but fundamentally different under the hood:

• No working directory.

• Data does will not exist in same exact backend/location on clones of same repo.

• Any number of commits can be checked out in `read-only` mode simultaneously

• Multiple processes can simultaneously checkout and read from the same commit

• All processes (except retrieval) can be performed on content not present locally.

• A single `write-enabled` checkout allowed at a time; is indifferent to read checkouts.

API

User

Storage
BackendBook-Keeping

Names / IDs
Commits

Hangar Execution Model

Data

What do we need?

Some way to store data on disk -----------------------> Storage Backends

Some way to record records and history ------------> Book-Keeping

Some way to interact with repo -----------------------> API

Domain Specific Needs
- Large-scale, n-dimensional, dense & sparse arrays

Storage Size Requirements
- No good if size of any dataset repository exceeds

individual developer capabilities (mid-grade laptop /
workstation)

Data Integrity & Provenance
- How to ensure that Data in == Data out for all of history?

No Exceptions.
- How to verify historical record?

Performance Scaling
- Scale from individual laptop to large cluster training DL

models.

Collaboration (Distribution)
- How to branch / diff / merge array data?
- Transfer speed limitations (due to data size)

Backend Book-Keeping API
Which Component Solves Which Problem?

Hangar in a nutshell

• Add, branch, merge, time-travel
• Clone, fetch, push
• Scalable: store locally or on the cloud
• No need of materializing all data (partial fetch) Data loaders for major
• DL frameworks Extensible import / export / diff/ viz for data

Demo!

Machine Learning DataLoaders

PyTorch

>>> from hangar import Repository
>>> from hangar import make_torch_dataset
>>> from torch.utils.data import DataLoader

>>> repo = Repository('.’)
>>> co = repo.checkout()
>>> aset = co.arraysets['dummy_aset’]

>>> dset = make_torch_dataset(aset, index_range=slice(1, 100))

>>> loader = DataLoader(dset, batch_size=16)
>>> for batch in loader:
... train_model(batch)

>>> from hangar import Repository
>>> from hangar import make_tf_dataset
>>> import tensorflow as tf

>>> tf.compat.v1.enable_eager_execution()
>>> repo = Repository('.’)
>>> co = repo.checkout()
>>> data = co.arraysets['mnist_data’]
>>> target = co.arraysets['mnist_target’]

>>> dset = make_tf_dataset([data, target])

>>> dset = dset.batch(512)
>>> for bdata, btarget in tf_dset:
... print(bdata.shape, btarget.shape)

TensorFlow

Acquire Data

Hangar

Augment
DataTrain Model

Deploy To
Production

Quality Assurance

Annotation & Labeling

Exploratory Analysis

Hangar Workflow

Wrapping Up

State of project
• Core is very solid. Release Candidate Quality
• Comprehensive test suite.
• Growing user base.

Unanswered Questions
• Scaling Limits
• Extremely fast + small records (10+ million samples tested with no issues)
• Storage backends designed specifically for this task (data is distributed

across multiple files containing collections of samples)
• Unclear where upper limit is!

How To Contribute?

• Benchmark & Test Breaking Point
• Have a lot of data?? Get in Touch!

• Increase backend support.
• Easy to do (3 methods required)
• Complete documentation already present
• Automatically tested!

• Performance of remote operations

• CLI Improvements

• Visualization of Diffs

• Hosted example repos

Questions?

Get in touch!

Github: @rlizzo
www.github.com/tensorwerk/hangar-py
Email: hangar.info@tensorwerk.com

http://www.github.com/tensorwerk/hangar-py
http://tensorwerk.com

