
Software Lifecycle at
CERN and in the HSF
Lukas Heinrich for the HEP Software Foundation

2

CERN:

Home of some of 
the biggest scientific
experiments:  
 
LHC + its experiments 
(ATLAS, CMS, LHCb, ALICE)

But also many others
smallers ones (TOTEM, ISOLDE, ...)

The Lab is also a central Hub for High Energy Physics in
general, coordinating many community-wide activities.

3

Besides massive Hardware...

4

Software is of course central to everything we do.

Wide range of software: from professional
"products" (ROOT, Geant4,SHERPA,...) to collaboration
specific million lines-of-code reconstruction frameworks
(Athena, CMSSW) to one-off analysis code / shell scripts.

Wide ranging spectrum of "process" of writing and
maintaining software.

ROOT

GEANT4
uproot

awkward-array
Athena

CMSSW

Gaudi pyhf zfit

boost-histogram

one-off  
plotting Macro

analysis-specific 
framework

HistFitter

flav-io

5

Software is of course central to everything we do.

The big challenge ahead of us: HL-LHC

Software needs too rise to the occasion on all levels.
Community needs to be equipped with infrastructure and
training to do so. 

6

Software is of course central to everything we do.

HEP Software Foundation

• founded in 2015 to tackle these challenges / to
provide a forum for sharing ideas, experience and
code between experiments

• Encourage best practice for development 
Both at the algorithmic and tools level  
Most of this work happening in the context  
of HSF Working Groups

7

Software is of course central to everything we do.

Community White Paper process

• common document to lay out plans for the next  
10 / 20 years in all areas of software & computing.

https://hepsoftwarefoundation.org/organization/cwp.html

https://hepsoftwarefoundation.org/organization/cwp.html
https://hepsoftwarefoundation.org/organization/cwp.html

8

Software is of course central to everything we do.

Community White Paper process

• common document to lay out plans for the next  
10 / 20 years in all areas of software & computing.

https://hepsoftwarefoundation.org/organization/cwp.html

• trend toward integration with
standard industry tools

• make our own softwarer more
modular / inter-operable

https://hepsoftwarefoundation.org/organization/cwp.html
https://hepsoftwarefoundation.org/organization/cwp.html

9

Preparing your software to be part of a larger
community.
CODE

Traditionally has been undervalued in
academic s/w (esp personal projects).

• It took a lot of work to correct this
situation for the LHC experiments’ code 

• If it works, getting CERN (or your host
lab) to hold copyright for the code works
very well (a single copyright holder makes
any relicensing easier)

• Collaborations or bodies like HSF cannot
hold copyright 

• Various Licenses Possible:
• https://opensource.org/licenses
• Good idea t ochoose such that 

your s/w can be easily reused / 
integrated into other softwaer.

https://opensource.org/licenses
https://opensource.org/licenses

10

Preparing your software to be part of a larger
community.
CONTRIBUTING

Having code "open source" in-
name only without expectation /
invitation to contribute generally
seen as anti-patterrn.

Should provide clear guidelines 
for new contributors no

• how to raise issues
• develop & test project code
• contribute code (pull requests)

open for external 
contributors

Example: ACTS Inter-experiment Tracking

Build Systems

A lot of our code is C++. Traditionally various versions of
build systems used:
• in-house developments ("cmt", ..)
• autoconf tools (./configure; make...)

In the meantime CMake has become the dominant build
system for C and C++ prrojects. Transitioned huge
codebases to it.

Trainings for CMake from HSF/FIRST-HEP

Software Packaging:

Traditionally a lot of "source packaging" but big software
projects provide e.g. conda recipes, RPMs, PyPI packages
to install software with standard package managers.

CERN EP-SFT Group evaluated Spack  
as one of the most promising
packaging tools for production use  
cases

guidelines for python 
packages from Scikit-HEP

conda install -c conda-forge root
yum install AnalysisBase
pip install uproot

Software Distribution:

Traditional Approach (last 10 years or so):

CVMFS: CERN VM Filesystem:
Model: read-only for most, write for few "publishers"

More recently: Everything is a Container.
• reproducible, portable standard unit
• easy integration into HPC, Cloud, Laptops...
• new development: efficient global distribution  

of images via cvmfs

13

container

 Operating 
System Frameworks User Code

millions of pulls  
by e.g. user's CI jobs

Software Distribution:

Integration of Containers into workload mgmt systems

Allows developers increased flexibility to define their  
"own stack".

• Particularly useful for Machine Learning Application

Software Citation:

Software is often the research product itself. Should be treated
as part of the scholarly record.

• cite software directly instead of "software papers" to attirbute
proper credit

• if you need a paper consider JOSS

CERN runs free service to mint DOI
deposit code, datasets: ZENODO

15

Journal of Open Source Software

extremely short "paper" 
main focus no code

CITATION

Example Projects:

generally can implement guidelines on all project scales:

16

Athena: ATLAS O(M) lines 
of core Reconstruction Code

pyhf: statistics code

• on-prem GitLab
• C++
• O(1000) contributors all from

same collaboration
• Jenkins CI (moving to GitLab)
• RPM packages
• nightly tests
• docker images
• code linting
• citation available
• IDE integration
• Code Review
• ...

• GitHub
• 3 core developers with O(10)

contibutors
• code linting
• Github Actions CIs
• code auto-forrmatting (black)
• docs auto-generation in CI
• automated PyPI packaging
• O(1000) unit tests
• Test Coverage > 95%
• Code Review

https://gitlab.cern.ch/atlas/athena https://github.com/scikit-hep/pyhf

https://gitlab.cern.ch/atlas/athena
https://gitlab.cern.ch/atlas/athena
https://github.com/scikit-hep/pyhf
https://github.com/scikit-hep/pyhf

17

Role of Host Lab / (common entity / EU project) providing
infrastructure is crucial to enable new developments.

Example 1 (Physical Infrastructure): 
GitLab introduced at CERN as new VC System. Analysis Teams 
required to have code in GitLab

Focus on integrated
developer experience,
on-prem deployment

Visible Change in attitudes from 
scientists to improve sofware
creation cycle.

If it's easy to use &
readily available, people
become quite ambitious.

typical analysis repo

pretty impressive CI

18

Role of Host Lab / (common entity / EU project) providing
infrastructure is crucial to enable new developments.

Example 2 (Organizational Infrastructure): 
HSF/IRIS-HEP Training on Modern Software Development Tools

Topics: git, cmake,

Format:
• Software Carpentry
• Recorded Lessones (COVID)

Build up a library / catalogue 
of community-wide training
material.

Again: if you offer it people will  
come: 200 sign-ups within days.

Role of Machine Learning:

Clear that ML will play increasing role in our software.
• we won't be driving the core software developments
• hardware increasingly targeted for ML

Strategies:

• cast existing problems as  
ML problems (e.g. tracking 
in Exa.TrkX)  
 

• instead of replacing our algorithms  
with ML, use ML foundation (highly  
vectorized computation + autodiff) for  
improved implementation (e.g. statistical fits)

once implemented on 
ML tools running on new  
h/w becomes easy

https://exatrkx.github.io/
https://exatrkx.github.io/

Role of Quickly Changing Hardware

We're entering a new age of more dynamic hardware platforms.
• Not only GPU: FPGA, ASIC, Dataflow Engines,
• can we adapt / rethink our algorithms to match the h/w?  

ML is one way, but not silver bullet.
• SYCL, Alpaka, etc as underlying libraries for  

software portability
• even if we could, do we have the expertise to implement

them? Advanced Training of Experts is crucial

Examples of Recent
GPU initiatives:
• ALICE reco
• LHCb Allen

(Trigger)
• CMS Patatrack

HSF Frameworks and Reconstruction
WGs gathering experience.

21

End User Software Re-use (Analysis Preservation)

For unique and large datasets such as those in HEP, the
end-user software is often the only window to extract
insight from a given dataset.

• software defined extraction of interesting data region
• If the software is gone the access to the "region" is gone

as well: need to preserve analyses

Ideally: continuously maintained code, but more
realistically "fixed code" of final published analysis is all
we can do

22

Marquee use-case: RECAST

Allow answer simple question: is a given theory already
excluded by existing LHC analyses or do we need a
dedicated study?

If analysis is preserved & functional: easy to answer
• simulate new model and pass through analysis to  

get a "reinterpreted result"

original model

Signal
Region

Signal
Region

alternative model

23

Simple Software Prerservation is not enough for Analysis
Preservation: need the full pipeline

Ingredients: Container Images, Workflow Languages
• similar trends in bioinformatics

CERN Working on Cyberinfrastructure to provide
Archive of preserved analysis and compute resources 
to re-execute them (REANA)

capture commands  
 

what do with the  
captured software

capture workflow 
 

order of individual steps

capture software  
 

archive analysis code incl.
dependencies

data assets  
 

input data needed  
to run the analysis

24

Success Stories: New Science out of Old Code :

• better scientific exploitation of data at low cost

• Examples from ATLAS: requirement on analysis teams to
preserve analysis (docker images, workflows) leads to new
results

• Potentially interesting ESCAPE test science case

ATL-PHYS-PUB-2020-007

New result!
Preserved Workflow (each node a Docker container workload)

25

Outlook

HSF founded to provide forum to discuss the big challenges in HEP
software & computing (with many trends outside of our direct
control: hardware, ML, data-science)

Provide / Develop Strategies and Tools for the full softwaer
lifecycle (authoring, build, package, distribute, perserve) to build a
sustainable Software Ecosystem for HEP in a changing world.

Training is crucial at all levels: beginners (git, docker, cmake) to
experts (accelerator programming, etc). HSF Provides

Given our unique data, the software itself becomes the product:
increased attention to preservation, reuse, reproducibility

CERN plays a crucial role as the central Host Lab to provide
infrastructure.

