
Containerization for
scientific reproducibility

Stefano Alberto Russo
stefano.russo@inaf.it

WOSSL Workshop
27 July 2020

mailto:stefano.russo@inaf.it

What are containers?

“Containers are a solution to the problem of how to get software to run
reliably when moved from one computing environment to another.”

cio.com

What are containers?

“Containers are a solution to the problem of how to get software to run
reliably when moved from one computing environment to another.”

cio.com

A.K.A. the dependency hell problem

The “dependency hell” problem (take A)
Mike wants to use a new software.

Mike cannot find a precompiled version that works with his OS and/or libraries.

Mike asks/Google for help and gets some basic instructions - like “compile it”.

Mike starts downloading all the development environment, and soon realizes that
he needs to upgrade (or downgrade!) some parts of his main Operating Systems.

During this process, something goes wrong.

Mikes spends an afternoon fixing his own OS, and all the next day in trying to
compile the software. Which at the end turns out not to do what he wanted.

The “dependency hell” problem (take B)
Mike wants to use a new software.

Mike finds a precompiled versions, he download and install it.

Mike runs the software and get the result “43”.

After a year Mike runs again that software and get the result “42”.

Mike takes a deep dive into the problem and finds out that a library used by the
software was called in the wrong way due to an API change in the version he had,
meaning that the “43” was wrong.

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

Container engine

Container Engine

Container Container Container

Host OS (kernel)

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

The “dependency hell” problem: solutions spectrum

Proper
requirements

Statically
linked

binaries

Virtual
environments Containerization VMs VMs with

hardware
emulation

Singularity Docker

Singularity vs Docker

Singularity Docker

Scientific computing IT industry standard

Running container are seen as processes Running containers are seen as (micro)services

Build as root, run as user Need near-root access or proper orchestrators

Limited or no support for networking Extensive support for networking

Singularity vs Docker

Singularity Docker

Filesystem: only partially isolated,directories as $HOME,
/tmp, /proc, /sys, and /dev are all binded by default.

Filesystem: completely isolated by default, volume or
folder binds must be explicitly set

Environment: from the host Environment: from scratch

Network: from the host Network: dedicated subnet

More similar to an environment More similar to a virtual machine

We will focus on Docker in the following

Gcc on Docker Hub
The “GitHub” for Docker Container Images

Gcc on Docker Hub (pull command)
$ docker pull gcc:5.4

Gcc on Docker Hub (downloading)

- You are downloading a minimalistic Linux distribution on top which has been installed gcc (v5.4).

- Thanks to Docker’s incremental file system, another container based on the same Linux minimalistic
distribution or ggc itself will not require to download/store it again.

$ docker pull gcc:5.4

5.4: Pulling from library/gcc

aa18ad1a0d33: Extracting [================================>] 33.98 MB/52.6 MB

15a33158a136: Download complete

f67323742a64: Download complete

c4b45e832c38: Downloading [===================>] 51.59 MB/134.7 MB

e5d4afe2cf59: Download complete

4c0020714917: Downloading [=======>] 30.59 MB/200.4 MB

b33e8e4a2db2: Download complete

c8dae0da33c9: Waiting

Gcc on Docker Hub (downloaded)
$ docker pull gcc:5.4

5.4: Pulling from library/gcc

aa18ad1a0d33: Pull complete

15a33158a136: Pull complete

f67323742a64: Pull complete

c4b45e832c38: Pull complete

e5d4afe2cf59: Pull complete

4c0020714917: Pull complete

b33e8e4a2db2: Pull complete

c8dae0da33c9: Pull complete

Digest: sha256:e6ef7f0295b9d915f8521de360e30803bf8561cfb9cea8e320aa66761be8ec42

Status: Downloaded newer image for gcc:5.4

Terminology warning:

- image: a “file” from which you can run a container
- container: an “entity” run from an image

Run Gcc (5.4) with Docker
$ docker run gcc:5.4 gcc -v

Run Gcc (5.4) with Docker
$ docker run gcc:5.4 gcc -v

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-linux-gnu/5.4.0/lto-wrapper

Target: x86_64-linux-gnu

Configured with: /usr/src/gcc/configure --build=x86_64-linux-gnu --disable-multilib

--enable-languages=c,c++,fortran,go

Thread model: posix

gcc version 5.4.0 (GCC)

$

Entering in the Gcc (5.4) container

Execute a (bash) shell in the container

List the root directories

$ docker run -t -i gcc:5.4 bash
root@b9c1414bab3d:/#

root@b9c1414bab3d:/# ls

bin boot dev etc home lib lib64 media mnt opt proc root run sbin srv

sys tmp usr var

You are root (and the prompt changes)

Entering in the Gcc (5.4) container

List running processes

Get the container IP address

root@b9c1414bab3d:/# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 1 13:54 pts/0 00:00:00 bash

root 8 1 0 13:54 pts/0 00:00:00 ps -ef

root@b9c1414bab3d:/# ip addr show dev eth0
 [...]

 inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0
 [...]

Entering in the Gcc (5.4) container

When you exit a container, you lose every change to the container File System

List running Docker containers (on another shell of your computer)
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b9c1414bab3d gcc:5.4 "bash" 3 seconds ago Up 1 second friendly_goodall

Exit the shell, and therefore the container
root@b9c1414bab3d:/# exit
$

Share files with a Docker container
Docker containers are isolated from your main (host) Operating System

- But you can make some folders visible from the containers as bindings (think
about an usb pendrive)

- Just append “-v your_os_folder:path_inside_the_container” to docker command

Docker Engine

Container Container Container

Host OS

Dependencies Dependencies

Application 2Application 1 Application 3

Hardware

We are creating a bridge

Compile your code with Gcc (5.4)

#include<stdio.h>

int main()
{
 printf("I run a very complex simulation and the result is 42\n");
}

Our test.c code:

Compile your code with Gcc (5.4)
$ docker run -v$PWD:/data gcc:5.4 gcc -o /data/Test/test.bin --verbose /data/Test/test.c

Using built-in specs.

COLLECT_GCC=gcc

COLLECT_LTO_WRAPPER=/usr/local/libexec/gcc/x86_64-linux-gnu/5.4.0/lto-wrapper

Target: x86_64-linux-gnu

Configured with: /usr/src/gcc/configure --build=x86_64-linux-gnu --disable-multilib

--enable-languages=c,c++,fortran,go

Thread model: posix

gcc version 5.4.0 (GCC)

COLLECT_GCC_OPTIONS='-o' '/data/Test/test.bin' '-v' '-mtune=generic' '-march=x86-64

[...]

$

Run your code compiled with Gcc (5.4)

$ docker run -v$PWD:/data gcc:5.4 /data/Test/test.bin

I just ran a very complex simulation and the result is 42

On your computer → no!

Inside the container → yes!

The Dockerfile

The Dockerfile
- The Dockerfile is what defines a Docker Container. Think about it as its

source code.
- When you build it, it generates a Docker Image. When you run a Docker

Image, this “becomes” a Docker Container, as mentioned before.

FROM <base image>

RUN <a setup command>

COPY <source file/folder on your OS> <dest file/folder in the container>

RUN <another setup command>

A container for our code
Let’s see how to include and compile your test code directly from a Dockerfile

FROM gcc:5.4

Add the test code

COPY test.c /opt

Compile the test code

RUN gcc -v -o /opt/test.bin /opt/test.c

A container for our code
Let’s now build it with“test.c” and the Dockerfile files in a folder named “Test”:

$ docker build Test -t testcontainer

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM gcc:5.4

 ---> b87db7824271

Step 2/3 : COPY test.c /opt

 ---> f5478f7830ee

Step 3/3 : RUN gcc -v -o /opt/test.bin /opt/test.c

 ---> Running in c839379f1fbe

Using built-in specs.

COLLECT_GCC=gcc

[...]

Removing intermediate container c839379f1fbe

 ---> 2f0c6f89fdc0

Successfully built 2f0c6f89fdc0

Successfully tagged testcontainer:latest

A container for our code
..and we can now run it:

$ docker run testcontainer /opt/test.bin

I just ran a very complex simulation and the result is 42

More about how to build your own containers
 in the breakout demo session

The last bit: an hard truth

Containers alone do not guarantee reproducibility

...they are just a tool!

Main dos and don'ts (1)
Do not build a container without explicitly freezing all dependencies

..because it will cause to get always the “latest” version if the container has to be rebuilt,
 and this includes Git repositories as well:

RUN git clone https://github.com/myuser/myrepo.git

RUN pip install pandas

RUN git clone https://github.com/myuser/myrepo.git && git checkout 653e7g2

RUN pip install pandas==0.21.0

Main dos and don'ts (2)
*Note: unfortunately, this is the
default behaviour in Singularity

Do not rely on the external environment (variables, files..) at runtime*

..because your containers will be error prone to different setups:

Main dos and don'ts (3)
Do not rely on unofficial or personal online resources

..because the risk of having them taken down is high, and your container will not rebuild.
 If you have to, include these resources in your container source folder or on secure mirrors.

Main dos and don'ts (4)
*Note: unfortunately, this is the
default behaviour in Singularity

Avoid use a container without a specific version tag, even when extending it

..because the container might get updated over time!

$ docker run gcc

FROM gcc (in the Dockerfile)

$ docker run gcc:v5.4

FROM gcc:v5.4 (in the Dockerfile)

Main dos and don'ts (5)

.. in general, always ask yourself:

what could change if I run this container in another environment,
or if I rebuild it in ten years time?

 Hope it helps :)

Questions?

Stefano Alberto Russo
stefano.russo@inaf.it

mailto:stefano.russo@inaf.it

