

VISPA: Web Platform for Scientific Data Analysis Needs

Martin Erdmann, Peter Fackeldey, <u>Benjamin Fischer</u>, Marcel Rieger for the VISPA Team

Physics Institute 3A, RWTH Aachen University

ESCAPE Science Platform - technical evaluation 21.10.2019

2 Introduction

VISPA (VISual Physics Analysis)

- platform for data analysis
- comprehensive work environment
- configurable and integratable
- allows for specialized tools

Outline

- Audience & requirements
- Concept
- Components
- What we are doing
- Implementation & Demo
 - VISPA Web
 - New VISPA
- Comparison to Alternatives
- Discussion

3 Audience and their requirements

Broad spectrum of users

Undergraduate student

- quick & easy access
 - → no installation
- basic analysis environment
 - → numpy, matplotlib, ...

Senior researcher

- full (software) environment control
 - → Virtualenv, ...
- custom resources
 - → Accelerators of CampusIT
- specialized tools
 - → Tensorboard, HTCondor, ...

Summarized requirements

high accessibility & low entrance barrier flexible & extendable

4 Concept - external requirements

5 Concept: externals in detail

- does not want to install/setup anything
- wants to work from anywhere
- needs persistence to continue where interrupted
- uses basic tools: file browser, code editor, terminal
- profits from custom/specialized tools
- may use their credentials for custom Resources

- anything SSH reachable
- may need intermediate connections (SSH ProxyJump)
- needs automatic bootstrapping
- consists of both:
 - storage
 - computing power

- User Interface: HTML + CSS + JS
 - desktop like interface
 - o dynamic: no (re)loading
 - reactive & multi-tasking
- VISPA: HTTP(S)S server
 - authentication
 - session & preferences storage
 - multi-resource & -user handling
 - APIs for translation to/through SSH
 - delivers UI/bootstrapping code
- Resource side RPC
 - implements complexer RPC directly on Resource

7 What we are doing

- Software: VISPA Web
 - https://git.rwth-aachen.de/3pia/vispa/vispa-web
 - 7+ years of development
- Service: VISPA Web
 - https://vispa.physik.rwth-aachen.de/server/
 - 5+ years of wide active usage
 - instance of Software
 - default Resource:
 - 200 CPU cores
 - 160 TFlops in GPUS
 - 30 TB storage

- Track record:
 - Bachelor & Master level physics lectures
 - Workshops & Tutorials (e.g. <u>Big Data Science in Astroparticle Research</u>)
 - Day-to-day work from Bachelor Student to Professor

DEMO VISPA Web

10 Implementation: VISPA Web

User Interface

- modularized, reusable OOP ode base
- mixed technologies: jQuery, Vue.js, Lesscss, ...
- uses external projects: Ace (powerful code editor), xterm.js, ...

Server

- CherryPy based web server
- SqlAlchemy backed storage
- Resource attached via RPyC & Paramiko
- User-Management system w/ User, Group and Project

Resource

- python based in-memory bootstrapping
- RPC code delivered from Server

Extension Mechanism

- bundles: UI & Server & RPC code
- chosen by Server operator (not User)

Generalized paradigm

integrate existing tools with web-based UI i.e. JupyterLab

→ HTTP API for (complex) connection brokering

Central aspects:

- highly modularized: pluggable authentication & pipelets
- more flexibility for the user: SSH-tunneling, Remote software
- leverages excellent work of community: JupyterLab
- custom tools mostly implemented as JupyterLab extension
 - → better accessibility & community (code-)feedback

DEMO New VISPA

13 New VISPA: Implementation

- User Interface
 - Nuxt.js based
 - remaining majority handled by external projects i.e. JupyterLab
- Server
 - Node.js
 - authentication: passport.js modules
 - database: sequelize (SQL)
 - SSH connections: ssh2
- Resource-site RPC
 - handled by external projects i.e. JupyterLab

Extension Mechanism(s):

- Authentication: passport.js
- Connection type: pipelets
- User Interface & Tools:
 - JupyterLab Extension
 - o anything with WebUI i.e. TensorBoard

14 Comparison to Alternatives

- Google Colab service
 - based on Jupyter Notebooks, integrated with Google computing resources
- Swan (CERN) service
 - based on Jupyter Notebooks, integrated with CERN computing resources
- JupyterHub software
 - used with Jupyter Notebooks or JupyterLab
 - configured by Administrator:
 - sole control over resources & their allocation
 - variety of integrations: Kubernetes, HTCondor, OpenStack, SSH ...
 - connects to the Resource through the Internet

VISPA has

- flexibility for user
- more than Notebooks (JupyterLab does this too)
- can integrate custom Web-Frontends, e.g. TensorBoard (new VISPA)

VISPA (VISual Physics Analysis)

- web-platform for data analysis
- comprehensive, browser-based, and extensible work environment
- use any external SSH resource
- configurable and integratable
- allows for specialized tools

Backup

