### Top-quark scale-and-scheme uncertainties in Higgs pair production at the LHC

LAPTh Thursday Seminar [remote] June 11<sup>th</sup>, 2020

### **Julien Baglio**

[with F. Campanario, S. Glaus, M. M. Mühlleitner, J. Ronca, M. Spira, and J. Streicher, EPJC 79 (2019) 459; JHEP 04 (2020) 181]





Introduction

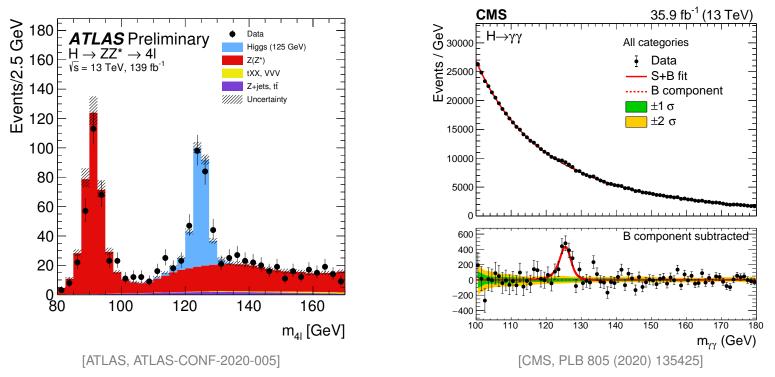
Full NLO QCD corrections to HH production

Top-quark scheme and scale uncertainties

Outlook



7/4/2012: CERN presents the discovery of a bosonic particle with Higgs-boson-like properties [ATLAS, PLB 716 (2012) 1; CMS *ibid* 30]

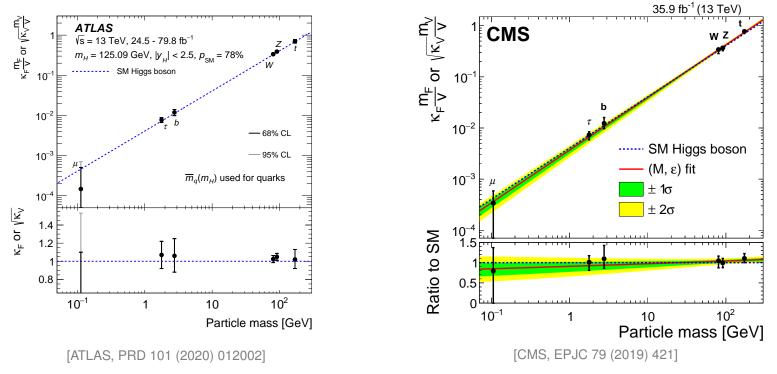


Spin and CP-properties: Compatible with a CP-even spin 0 boson,  $M_H \sim 125$  GeV: The first elementary scalar particle observed in Nature



7/4/2012: CERN presents the discovery of a bosonic particle with Higgs-boson-like properties [ATLAS, PLB 716 (2012) 1; CMS *ibid* 30]

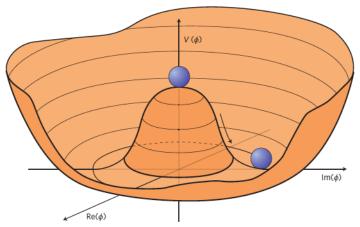
Couplings compatible with a Higgs boson



#### Still unknown: Higgs boson self-couplings



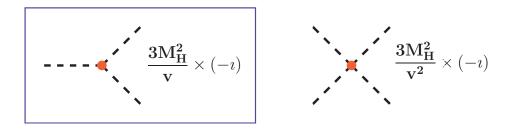
• From the scalar potential before EWSB ( $\phi$  as the Higgs field):



 $V(\phi) = -m^2 |\phi|^2 + \lambda |\phi|^4$ 

• To  $V(\phi)$  after EWSB, with  $M_H^2 = 2m^2$ ,  $v^2 = m^2/\lambda$ :

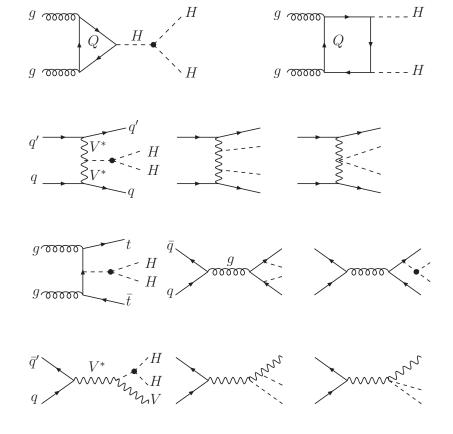
$$\phi = \left(\frac{0}{\frac{\nu + H(x)}{\sqrt{2}}}\right) \Rightarrow V(H) = \frac{1}{2}M_H^2H^2 + \frac{1}{2}\frac{M_H^2}{\nu}H^3 + \frac{1}{8}\frac{M_H^2}{\nu^2}H^4 + \text{constant}$$



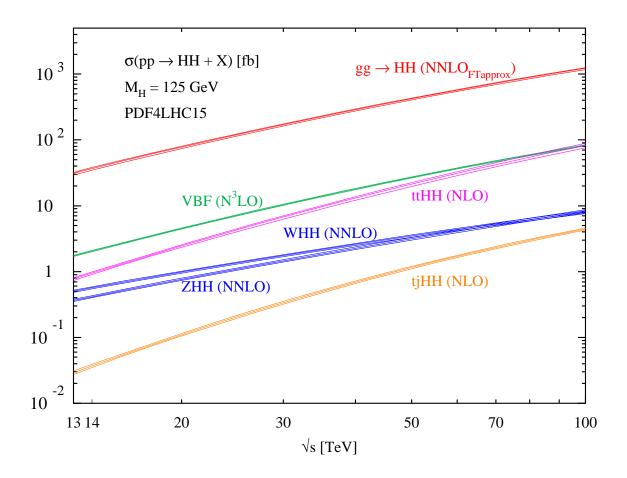


### **Overview of HH production channels**

- Gluon fusion: focus of the talk
   Leading order (LO) QCD already
   loop-induced
- Vector boson fusion
   NLO QCD [1,2], NNLO QCD [3],
   N<sup>3</sup>LO QCD [4], NLO EW [5]
- *t*<del>t</del>*HH* production NLO QCD [2]
- Double Higgs-strahlung NLO QCD [1,2], NNLO QCD [1,6]
  - [1] J.B., Djouadi, Gröber, Mühlleitner, Quevillon, Spira, JHEP 04 (2013) 151
  - [2] Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro, PLB 732 (2014) 142
  - [3] Ling, Zhang, Ma, Guo, W.H. Li, X.Z. Li, PRD 89 (2014) 073001
  - [4] Dreyer, Karlberg, PRD 98 (2018) 114016
  - [5] Dreyer, Karlberg, Lang, Pellen, arXiv:2005.13341
  - [6] H.T. Li, Wang, PLB 765 (2017) 265; H.T. Li, C.S. Li, Wang, PRD 97 (2018) 074026



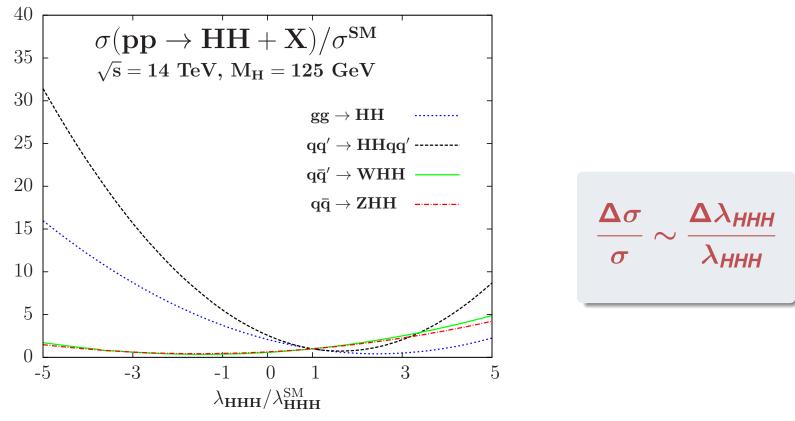




<sup>[</sup>from Di Micco et al, arXiv:1910.00012]



### Assuming the SM is valid:



[J.B., Djouadi, Gröber, Mühlleitner, Quevillon, Spira, JHEP 04 (2013) 151]

### $\Rightarrow$ Compulsory to get the cross section to high accuracy!

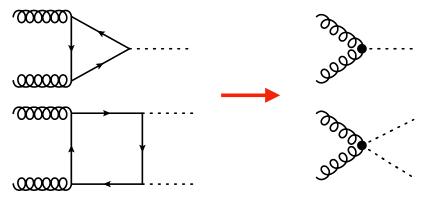
# Heavy top-quark limit (HTL) calculation

### Gluon fusion: main production channel, top-quark loops dominant [Eboli,

Marques, Novaes, Natale, PLB 197 (1987) 269; Glover, van der Bij, NPB 309 (1988) 282; Dicus, Kao, Willenbrock, PLB 203 (1988) 457]



- $\rightarrow$  Effective tree-level *ggH* and *ggHH* couplings
- ightarrow Reduce the number of loop by one at each perturbative order



- HTL valid for  $\hat{s} \ll 4m_t^2$ , but *HH* production threshold  $4M_H^2 \le \hat{s}$ ⇒ narrow energy range for which HTL is valid!
- Born-improved NLO QCD HTL: improve HTL result with  $d\sigma_{\rm NLO} \simeq d\sigma_{\rm NLO}^{\rm HTL} \times \frac{d\sigma_{\rm LO}^{\rm full}}{d\sigma_{\rm LO}^{\rm HTL}}$  [Dawson, Dittmaier, Spira, PRD 58 (1998) 115012]



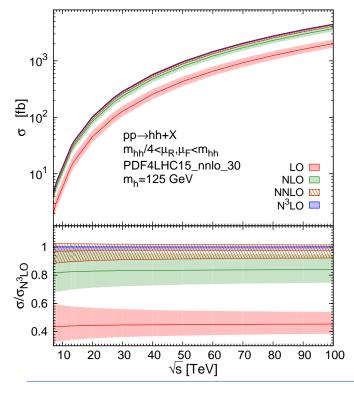
### NLO QCD HTL (1-loop): +93% correction

[Dawson, Dittmaier, Spira, PRD 58 (1998) 115012]

### ■ NNLO QCD HTL (2-loop): +20% on total cross section

[De Florian, Mazzitelli, PLB 724 (2013) 306; PRL 111 (2013) 201801]

### N<sup>3</sup>LO QCD (3-loop):+3% on total cross section



[Chen, Li, Shao, Wang, PLB 803 (2020) 135292]



### In the quest for precision, going beyond the HTL is necessary

- Toward full NLO QCD (2-loop):
  - $\rightarrow$  NLOFT<sub>approx</sub>,  $m_t$ -effects in real radiation: -10%

[Frederix et al, PLB 732 (2014) 079, Maltoni, Vryonidou, Zaro, JHEP 11 (2014) 079]

 $\rightarrow \mathcal{O}(1/m_t^{12})$  terms in virtual amplitudes:  $\pm 10\%$ 

[see e.g. Grigo, Hoff, Steinhauser, NPB 900 (2015) 412]

- Full NLO QCD: two independent results on the market, see later in the talk!
- NNLO FT<sub>approx</sub>: full NLO QCD + NNLO HTL + NNLO exact reals  $\Rightarrow$  +10% to +20% in distributions

[Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli, JHEP 05 (2018) 059]

- N<sup>3</sup>LO beyond HTL: full NLO QCD convoluted with N<sup>3</sup>LO HTL  $\Rightarrow +3\%$  on top of the NNLO FT<sub>approx</sub> [Chen, Li, Shao, Wang, JHEP 03 (2020) 072]
- Various analytical approximations: Padé approximants, *p*<sup>2</sup><sub>T</sub>-expansion, high-energy expansion [Gröber, Maier, Rauh JHEP 03 (2018) 020;

Bonciani, Degrassi, Giardino, Gröber, PRL 121 (2018) 162003; Davies, Mishima, Steinhauser, Wellmann, JHEP 01 (2019) 176]



# Full NLO QCD corrections to $gg \rightarrow HH$



### Two independent calculations on the market:

- Reduction to master integrals, sector decomposition, contour deformation [Borowka et al, PRL 117 (2016) 012001; JHEP 10 (2016) 107]
  - ightarrow Large mass effects in the tail up to  $\sim -30\%$  w.r.t. HTL
  - $\rightarrow\,$  Born-improved HTL outside full NLO scale variation for  $m_{H\!H}>400~{\rm GeV}$
  - $\rightarrow$  No quantitative statement on the top-quark scheme uncertainty
- Direct integration of the tensor integrals, integration-by-part, Richardson extrapolation [J.B., Campanario, Glaus, Mühlleitner, Spira, Streicher, EPJC 79 (2019)

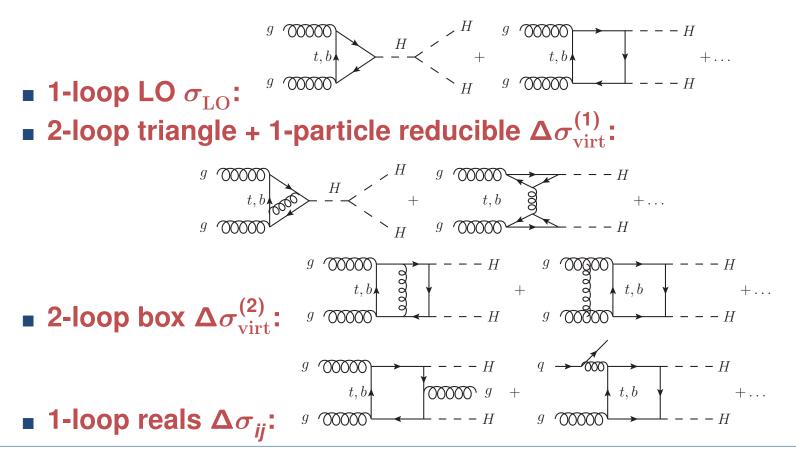
459; J.B., Campanario, Glaus, Mühlleitner, Ronca, Spira, Streicher, JHEP 04 (2020) 181]

- → Same findings for the total cross section and invariant mass distributions
- $\rightarrow$  Detailed study of the top-mass scale-and-scheme uncertainty

### Focus on the second method



$$\sigma_{\rm NLO}(pp \to HH + X) = \sigma_{\rm LO} + \Delta \sigma_{\rm virt}^{(1)} + \Delta \sigma_{gg}^{(2)} + \Delta \sigma_{gg} + \Delta \sigma_{gq} + \Delta \sigma_{q\bar{q}}$$





### **Technical setup for the virtual corrections**

- Triangle from single Higgs, 1-particle reducible analytically calculated
   [see also Degrassi, Giardino, Gröber, EPJC 76 (2016) 411]
- Classification of the 47 2-loop tensor box diagrams into 6 topologies (+ corresponding fermion-flow reversed diagrams)
- With dimensional regularization  $D = 4 2\epsilon$ : calculate the matrix-element form factors  $F_1$  and  $F_2$  using FORM/Reduce/Mathematica for  $g(k_1)g(k_2) \rightarrow H(k_3)H(k_4)$ ,

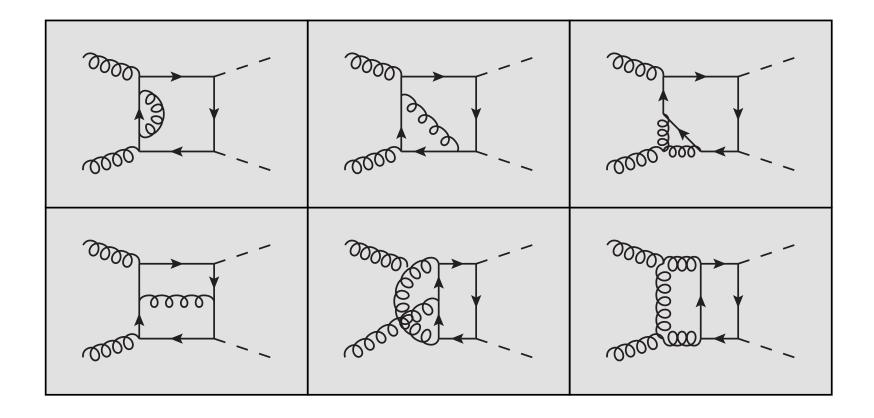
$$\mathcal{M} = \varepsilon_{\mu}^{*}(\mathbf{k}_{1})\varepsilon_{\nu}^{*}(\mathbf{k}_{2})\left(F_{1}\mathbf{T}_{1}^{\mu\nu} + F_{2}\mathbf{T}_{2}^{\mu\nu}\right),$$

$$\begin{split} \mathbf{T}_{1}^{\mu\nu} &= g^{\mu\nu} - \frac{k_{2}^{\mu}k_{1}^{\nu}}{k_{1} \cdot k_{2}}, \qquad p_{T}^{2} = 2\frac{(k_{2} \cdot k_{3})(k_{1} \cdot k_{3})}{k_{1} \cdot k_{2}} - k_{3}^{2}, \\ \mathbf{T}_{2}^{\mu\nu} &= g^{\mu\nu} + \frac{k_{2}^{\mu}k_{1}^{\nu}}{(k_{1} \cdot k_{2})p_{T}^{2}}k_{3}^{2} - \frac{2}{p_{T}^{2}}\left[\frac{k_{2} \cdot k_{3}}{k_{1} \cdot k_{2}}k_{3}^{\mu}k_{1}^{\nu} + \frac{k_{1} \cdot k_{3}}{k_{1} \cdot k_{2}}k_{2}^{\mu}k_{3}^{\nu} - k_{3}^{\mu}k_{3}^{\nu}\right] \end{split}$$

#### Perform Feynman parametrization

 $\rightarrow$  6-dimensional integrals to be (numerically) evaluated







Extraction of ultraviolet (UV) divergences: Endpoint subtraction of the Feynman integrals

$$\int_0^1 dx \, \frac{f(x)}{(1-x)^{1-\epsilon}} = \frac{f(1)}{\epsilon} + \int_0^1 dx \, \frac{f(x) - f(1)}{1-x} + \mathcal{O}(\epsilon)$$

Infrared (IR) divergences in the middle of the range ⇒ Subtraction of the integrand and analytical integration

- Generic denominator  $N = ar^2 + br + c$ ,  $N_0 = br + c$
- Singular infrared behavior in the limit  $r \rightarrow 0$
- $a, c = \mathcal{O}\left(1/m_t^2\right), \quad b = 1 + \mathcal{O}\left(1/m_t^2\right)$

$$\int_{0}^{1} dx dr \, \frac{rH(x,r)}{N^{3+2\epsilon}} = \int_{0}^{1} dx dr \, \left[ \left( \frac{rH(x,r)}{N^{3+2\epsilon}} - \frac{rH(x,0)}{N_{0}^{3+2\epsilon}} \right) + \frac{rH(x,0)}{N_{0}^{3+2\epsilon}} \right]$$



• Threshold at  $\hat{s} = m_{HH}^2 = 4m_t^2$ :

 $\Rightarrow$  Analytical continuation in the complex plane with

$$m_t^2 
ightarrow m_t^2 \left(1 - i ilde{\epsilon}
ight), \;\; ilde{\epsilon} \ll 1$$

• Enhance stability above threshold with integration by parts Example with N = a + bx:

$$\int_0^1 dx \, \frac{2b \, f(x)}{N^3} = \frac{f(0)}{a^2} - \frac{f(1)}{(a+b)^2} + \int_0^1 dx \, \frac{f'(x)}{N^2}$$

 For *b*-quark loop, same game but with more integration by parts (*b*-quark loop left for future work)



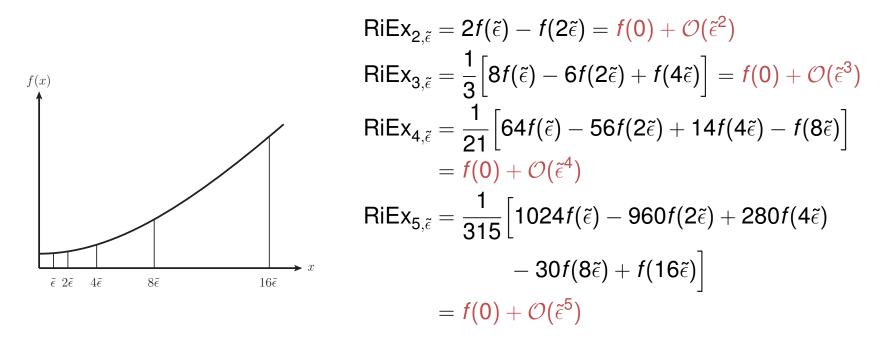
- $\alpha_s$  and  $m_t$  input parameters to renormalize
  - $\rightarrow$  MS renormalization for  $\alpha_s$  with 5 active flavors,  $\delta_{\alpha_s}$
  - $\rightarrow$  Top-quark contribution to the external gluon self-energies,  $\delta_g$
  - $\rightarrow$  On-shell renormalization for  $m_t$ ,  $\delta_{m_t}$

### • IR subtraction, $\delta_{\rm IR}$ :

Subtraction of Born-improved HTL virtual corrections to box diagrams  $\Rightarrow$  IR-safe virtual mass-effects

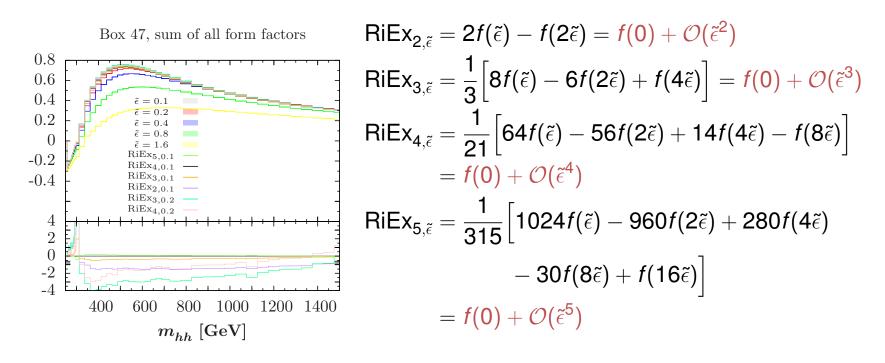


- Goal: From m<sup>2</sup><sub>t</sub> (1 i \vec{\epsilon}), obtain the limit \vec{\epsilon} → 0
  Solution: Richardson extrapolation of the result!
  - Assuming  $f(\tilde{\epsilon}) f(0)$  polynomial for small  $\tilde{\epsilon}$ , method to accelerate the convergence of  $f(\tilde{\epsilon})$  to f(0)



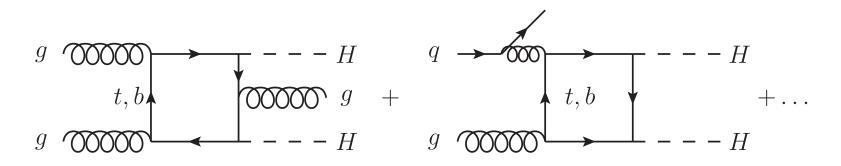


Goal: From m<sup>2</sup><sub>t</sub> (1 − iẽ), obtain the limit ẽ → 0
Solution: Richardson extrapolation of the result! Assuming f(ẽ) − f(0) polynomial for small ẽ, method to accelerate the convergence of f(ẽ) to f(0)





Partonic sub-processes  $gg \rightarrow HHg, gq/\bar{q} \rightarrow HHq/\bar{q}, q\bar{q} \rightarrow HHq$ 



- Full matrix elements generated with FeynArts/FormCalc [see Hahn, PoS ACAT2010 (2010) 078], evaluated with 1-loop library COLLIER [Denner, Dittmaier, Hofer, CPC 212 (2017) 220]
- Then subtracted with Born-improved HTL matrix-element squared calculated analytically
   > IR safe mass effects in the reals



- Numerical integration performed with VEGAS on a cluster,  $\hat{t}$ -integration
- Final hadronic result:

$$\Delta \hat{\sigma}_{\text{virt}} = \int d\Phi_{2 \to 2} \left[ (\delta_{\alpha_s} + \delta_g + \delta_{m_t} + \delta_{\text{IR}} + \mathcal{M}_{\text{virt}}^{\Box}) (\mathcal{M}_{\text{LO}})^* \right] + \Delta \hat{\sigma}_{\text{virt}}^{\bigtriangleup} + \Delta \hat{\sigma}_{\text{virt}}^{1\text{PR}}$$

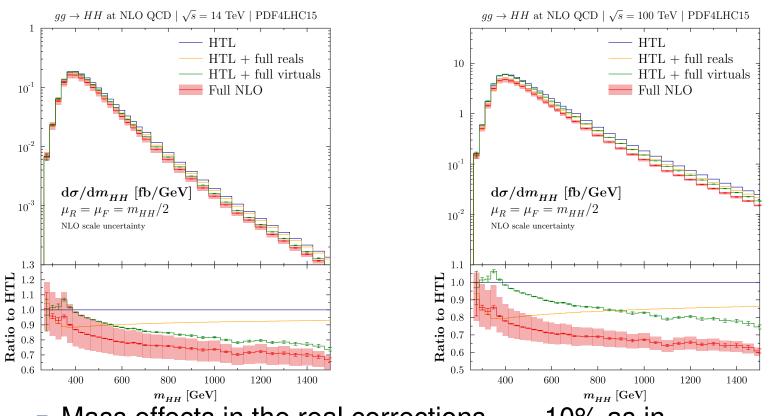
With 
$$Q^2 = m_{HH}^2$$
:  $Q^2 \frac{d\Delta \sigma_{\text{virt}}}{dQ^2} = \tau \frac{d\mathcal{L}^{gg}}{d\tau} \Delta \hat{\sigma}_{\text{virt}} (Q^2)|_{\tau = \frac{Q^2}{s}} \int \frac{d\mathcal{L}^{gg}}{d\tau} \equiv \text{gluon parton density}$ 

$$Q^{2} \frac{d\sigma_{\rm NLO}}{dQ^{2}} = Q^{2} \frac{d\sigma_{\rm HPAIR}}{dQ^{2}} + Q^{2} \frac{d\Delta\sigma_{\rm virt}}{dQ^{2}} + Q^{2} \frac{d\Delta\sigma_{\rm reals}}{dQ^{2}}$$

HTL hadronic result calculated with HPAIR [Spira, 1996]

Input parameters: can be freely chosen! PDG values for  $M_W$  and  $M_Z$ ,  $M_H = 125 \text{ GeV}, m_t = 172.5 \text{ GeV}, G_F = 1.1663787 \times 10^{-5} \text{ GeV}^{-2}, \sqrt{s} = 14 \text{ TeV}$ 



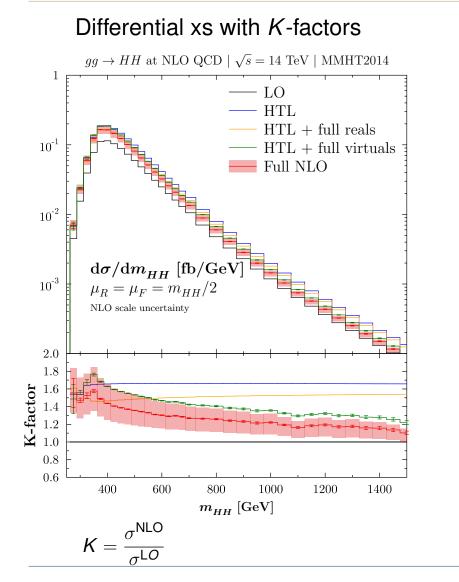


Mass effects in the real corrections  $\sim -10\%$  as in [Maltoni, Vryonidou,

Zaro, JHEP 11 (2014) 079]

- Mass effects in the virtual corrections  $\sim -25\%$  at  $m_{HH} = 1$  TeV
- HTL results outside the scale variation band (in red) of the full results





Total hadronic xs

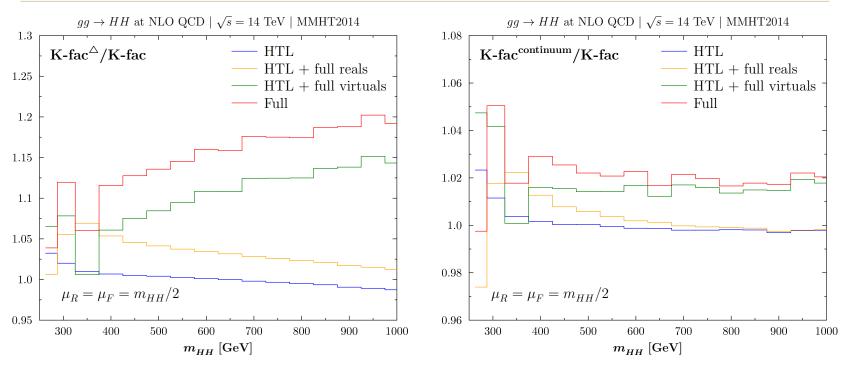
| Energy  | m <sub>t</sub> = 172.5 GeV        |
|---------|-----------------------------------|
| 13 TeV  | $27.73(7)^{+13.8\%}_{-12.8\%}$ fb |
| 14 TeV  | $32.81(7)^{+13.5\%}_{-12.5\%}$ fb |
| 27 TeV  | $127.0(2)^{+11.7\%}_{-10.7\%}$ fb |
| 100 TeV | $1140(2)^{+10.7\%}_{-10.0\%}$ fb  |

(using PDF4LHC PDFs, central scale  $\mu_R = \mu_F = m_{HH}/2$ )

20/30 | J. Baglio



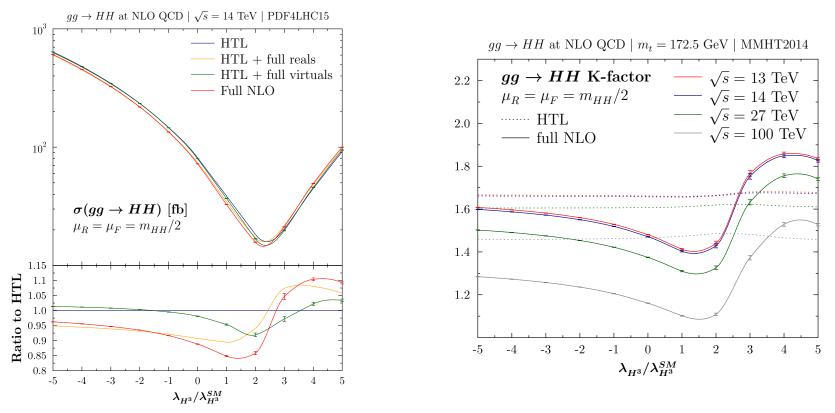
### **Structure of the corrections**



- Continuum diagrams ( $\equiv$  all but with  $\lambda_{HHH}$ ) play a dominant role at large  $m_{HH}$
- No universal NLO top-mass effects (common in the triangle and box diagrams)
  - $\Rightarrow$  not possible to approximate full NLO by single Higgs *K*-factors



### Variation of the triple Higgs coupling



- Minimum of the cross section shifted from  $\lambda/\lambda_{SM} = 2.4$  to 2.3 due to mass effects in the real corrections
- *K*-factors vary a lot over the  $\lambda/\lambda_{SM}$  range  $\Rightarrow$  mass effects have significant impact on the extraction of  $\lambda_{HHH}$



# *m<sub>t</sub>* scale-and-scheme uncertainties



- Top-quark mass can be renormalized in the on-shell (OS) scheme or in the MS scheme
- In the  $\overline{MS}$  scheme: What scale choice for  $\overline{m}_t(\mu_t)$ ?

 $\neq$  choices  $\Rightarrow \neq$  results!

Envelop of the  $\neq$  results  $\equiv$  top-quark scale-and-scheme uncertainty

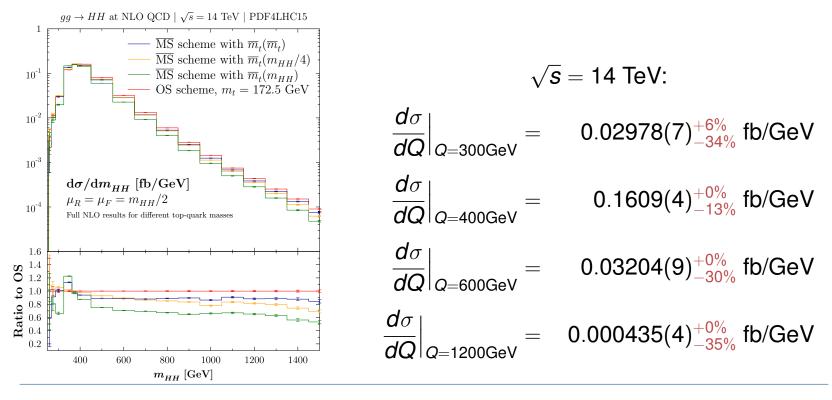
- $\rightarrow$  At LO QCD: only parametric dependence on  $m_t$
- $\rightarrow$  At NLO QCD and beyond: logarithmic dependence on  $m_t$  in the virtual (and virtual-reals, etc) corrections
- $\rightarrow$  How to cancel this dependence, and reduce the uncertainties?

# NLO uncertainties in differential distributions

 $\blacksquare$  Switch to  $\overline{\text{MS}}$  scheme  $\rightarrow$  modification of the mass counterterm

$$\frac{\delta m_t}{m_t} = \frac{\alpha_s}{\pi} \Gamma(1+\epsilon) \left(\frac{4\pi\mu_R^2}{m_t^2}\right)^{\epsilon} \left(\frac{1}{\epsilon} - \log\left(\frac{\mu_{R,t}^2}{m_t^2}\right)\right)$$

• Compare the predictions with OS  $m_t$ ,  $\overline{m}_t(\overline{m}_t)$ ,  $\overline{m}_t(\mu_t)$  with  $Q/4 \le \mu_t \le Q$ , take the envelop  $\rightarrow$  our uncertainty

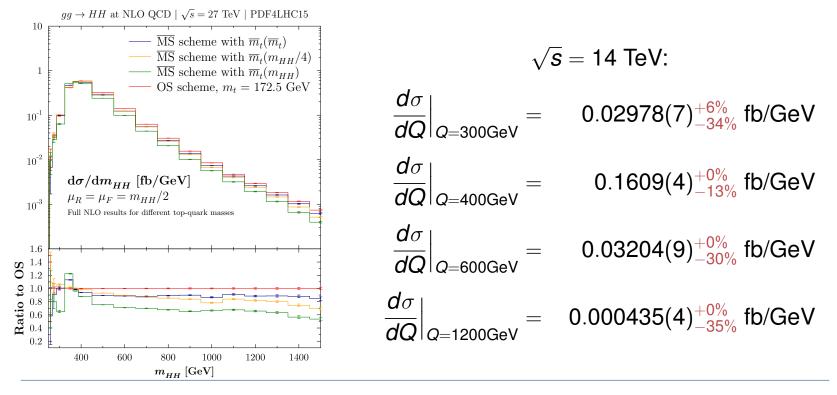


# NLO uncertainties in differential distributions

 $\blacksquare$  Switch to  $\overline{\text{MS}}$  scheme  $\rightarrow$  modification of the mass counterterm

$$\frac{\delta m_t}{m_t} = \frac{\alpha_s}{\pi} \Gamma(1+\epsilon) \left(\frac{4\pi\mu_R^2}{m_t^2}\right)^{\epsilon} \left(\frac{1}{\epsilon} - \log\left(\frac{\mu_{R,t}^2}{m_t^2}\right)\right)$$

• Compare the predictions with OS  $m_t$ ,  $\overline{m}_t(\overline{m}_t)$ ,  $\overline{m}_t(\mu_t)$  with  $Q/4 \le \mu_t \le Q$ , take the envelop  $\rightarrow$  our uncertainty



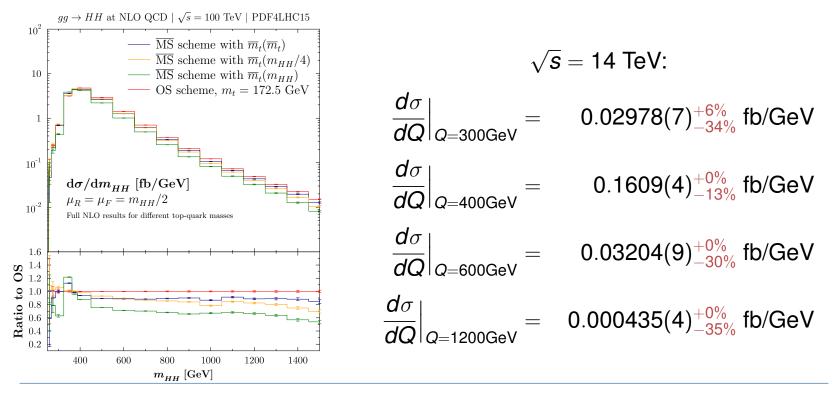
24/30 | J. Baglio

# NLO uncertainties in differential distributions

 $\blacksquare$  Switch to  $\overline{\text{MS}}$  scheme  $\rightarrow$  modification of the mass counterterm

$$\frac{\delta m_t}{m_t} = \frac{\alpha_s}{\pi} \Gamma(1+\epsilon) \left(\frac{4\pi\mu_R^2}{m_t^2}\right)^{\epsilon} \left(\frac{1}{\epsilon} - \log\left(\frac{\mu_{R,t}^2}{m_t^2}\right)\right)$$

• Compare the predictions with OS  $m_t$ ,  $\overline{m}_t(\overline{m}_t)$ ,  $\overline{m}_t(\mu_t)$  with  $Q/4 \le \mu_t \le Q$ , take the envelop  $\rightarrow$  our uncertainty



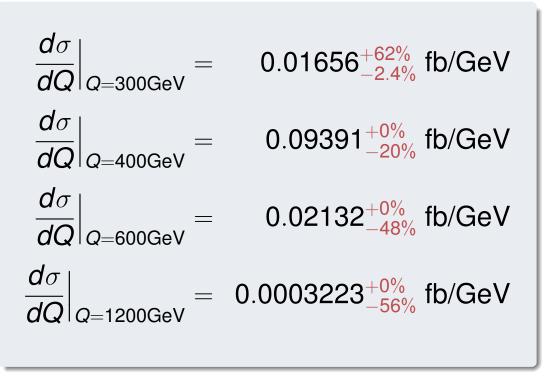
24/30 | J. Baglio

Investigating the  $m_t$  uncertainties in HH production at the LHC

LAPTh Thursday Seminar, 11/06/2020



Only parametric at LO, coming from the conversion  $m_t \rightarrow \overline{m}_t(\mu_t)$ At 14 TeV:



A factor of 2 higher than at NLO



Take for individual Q values the maximum / minimum differential cross section and integrate

$$\sigma_{13 \text{ TeV}}^{\text{NLO}}(gg \to HH) = 27.73(7)^{+4\%}_{-18\%} \text{ fb}$$
  
 $\sigma_{14 \text{ TeV}}^{\text{NLO}}(gg \to HH) = 32.81(7)^{+4\%}_{-18\%} \text{ fb}$   
 $\sigma_{27 \text{ TeV}}^{\text{NLO}}(gg \to HH) = 127.0(2)^{+4\%}_{-18\%} \text{ fb}$   
 $\sigma_{100 \text{ TeV}}^{\text{NLO}}(gg \to HH) = 1140(2)^{+3\%}_{-18\%} \text{ fb}$ 

## Sizable uncertainty comparable to the usual factorization/renormalization scale uncertainty



Scale-and-scheme uncertainty from logs of  $\mu_t \Rightarrow$  What scale to minimize these logs?

- Low *Q*-values: Peak of *Q*-distribution around the  $t\bar{t}$ -threshold ⇒ Natural choice is OS  $m_t$ , or  $\overline{m}_t(\overline{m}_t)$
- High *Q*-values: Analytical results in the MS scheme [see also Davies,

Mishima, Steinhauser; Wellmann, JHEP 01 (2019) 176]

$$F_{i,\text{LO}} \rightarrow \frac{\overline{m}_{t}^{2}(\mu_{t})}{Q^{2}}G_{i}^{\text{LO}}(Q^{2},\hat{t})$$
$$\Delta F_{i,\text{mass}} \rightarrow \frac{\alpha_{s}}{\pi} \left\{ 2F_{i,\text{LO}}\left[\log\frac{\mu_{t}^{2}}{Q^{2}} + \frac{4}{3}\right] + \frac{\overline{m}_{t}^{2}(\mu_{t})}{Q^{2}}G_{i}(Q^{2},\hat{t}) \right\}$$

 $G_i$  and  $G_i^{LO}$  do not depend on  $\overline{m}_t$  $\Rightarrow$  Natural choice at high Q is  $\mu_t \propto Q$ 



### Is this uncertainty seen in other processes?

Take a look at  $\sigma(gg \rightarrow H^*)$  [Graudenz, Spira, Zerwas, PRL 70 (1993) 1372; Spira, Djouadi, Graudenz, Zerwas, NPB 453 (1995) 17; Harlander, Kant, JHEP 12 (2005) 015; Aglietti, Bonciani, Degrassi, Vicini, JHEP 01 (2007) 021; Anastasiou, Bucherer, Kunszt, JHEP 10 (2009) 068]

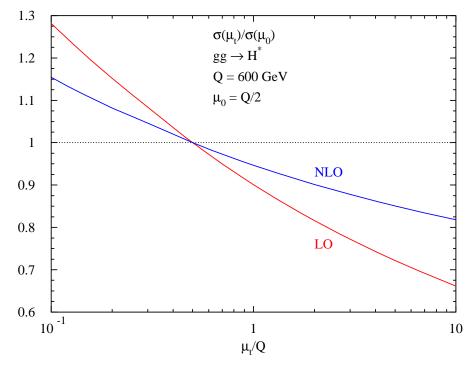
| $\sigma^{\text{LO}}\Big _{Q=125 	ext{GeV}} = 18.43^{+0.8\%}_{-1.1\%} 	ext{ pb}$   | $\sigma^{ m NLO}\Big _{\it Q=125 GeV}=42.17^{+0.4\%}_{-0.5\%}~ m pb$         |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $\sigma^{\text{LO}}\Big _{Q=300 	ext{GeV}} = 4.88^{+23.1\%}_{-1.1\%} 	ext{ pb}$   | $\sigma^{ m NLO}\Big _{\it Q=300 GeV}=9.85^{+7.5\%}_{-0.3\%}~ m pb$          |
| $\left.\sigma^{ m LO} ight _{\it Q=600 GeV}=1.13^{+0\%}_{-26.2\%}~{ m pb}$        | $\sigma^{ m NLO}\Big _{\it Q=600 GeV}=1.97^{+0\%}_{-15.9\%}~ m pb$           |
| $\sigma^{\text{LO}}\Big _{Q=1200\text{GeV}} = 0.0249^{+0\%}_{-41.1\%} \text{ pb}$ | $\sigma^{\rm NLO}\Big _{Q=1200{ m GeV}} = 0.0402^{+0\%}_{-26.0\%} { m \ pb}$ |

### Similar uncertainties showing up at large *Q*! [Jones, Spira, in arXiv:2003.01700]



### Is this uncertainty seen in other processes?

Take a look at  $\sigma(gg \rightarrow H^*)$  [Graudenz, Spira, Zerwas, PRL 70 (1993) 1372; Spira, Djouadi, Graudenz, Zerwas, NPB 453 (1995) 17; Harlander, Kant, JHEP 12 (2005) 015; Aglietti, Bonciani, Degrassi, Vicini, JHEP 01 (2007) 021; Anastasiou, Bucherer, Kunszt, JHEP 10 (2009) 068]



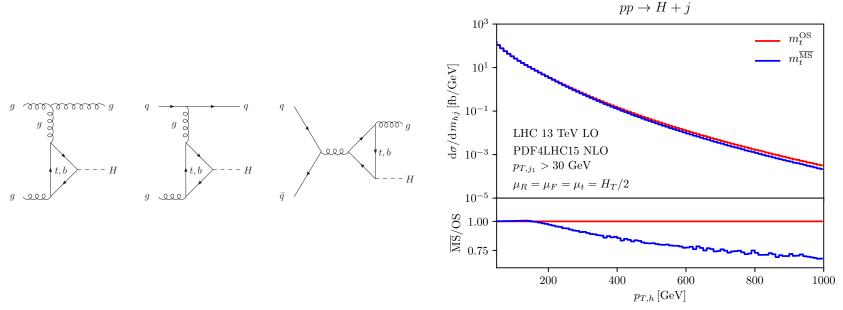
#### Similar uncertainties showing up at large *Q*! [Jones, Spira, in arXiv:2003.01700]



### Is this uncertainty seen in other processes?

Take a look at  $\sigma(gg \rightarrow Hj)$ , relevant for high- $p_T$  Higgs studies [Baur, Glover, NPB 339 (1990)

38; Schmidt, PLB 413 (1997) 391; De Florian, Grazzini, Kunszt, PRL 82 (1999) 5209; Glosser, Schmidt, JHEP 12 (2002) 016; Ravindran, Smith, Van Neerven, NPB 634 (2002) 247; Jones, Kerner, Luisoni, PRL 120 (2018) 162001]



### Again sizable uncertainties, showing up at large $p_{T,h}$

[Jones, Spira, in arXiv:2003.01700]



- Calculation of the two-loop integrals of gg → HH with three mass scales without reduction to master integrals
  - $\rightarrow$  Results obtained in the OS scheme and in the  $\overline{MS}$  scheme, scale uncertainty  $\sim\pm10-15\%$
  - $\rightarrow$  Large NLO top-quark mass effects,  $\sim -15\%$  in the total cross section
  - $\rightarrow$  Extraction of  $\lambda_{HHH}$  sizably impacted by the top-quark mass effects
- Sizable top-quark scale-and-scheme uncertainty:  $\sim$  30% at large Q,  $\sim$  22% on the total cross section

 $\sigma_{
m 14\ TeV}^{
m NLO}(gg 
ightarrow {\it HH}) = 32.81(7) \ ^{+13.5\%}_{-12.5\%} (\mu_{\it R},\mu_{\it F}) \ ^{+4\%}_{-18\%} (\mu_t)$ 

• Top-quark scale-and-scheme uncertainty sizable in a variety of processes  $\rightarrow$  Issue not only for *HH* production

- → Full NNLO calculation required to decrease the uncertainty: Tough!
- Outlook: Extension to 2HDM models, bottom-quark loop



### **Backup slides**



• UV renormalization:  $\delta_{\alpha_s}$ ,  $\delta_g$ ,  $\delta_{m_t}$  $\rightarrow \overline{\text{MS}}$  renormalization for  $\alpha_s$  with 5 active flavors  $N_F = 5$ 

$$\frac{\delta \alpha_{s}}{\alpha_{s}} = \frac{\alpha_{s}}{\pi} \Gamma(1+\epsilon) \left(4\pi\right)^{\epsilon} \left[-\frac{33-2(N_{F}+1)}{12\epsilon} + \frac{1}{6} \log\left(\frac{\mu_{R}^{2}}{m_{t}^{2}}\right)\right], \quad \delta_{\alpha_{s}} = \frac{\delta \alpha_{s}}{\alpha_{s}} \mathcal{M}_{\text{LO}}$$

 $\rightarrow$  Top-quark contribution to the external gluons self-energies

$$\delta_g = \frac{\alpha_s}{\pi} \, \Gamma(1+\epsilon) \left(\frac{4\pi\mu_R^2}{m_t^2}\right)^{\epsilon} \left(-\frac{1}{6\epsilon}\right) \mathcal{M}_{\rm LO}$$

 $\rightarrow$  On-shell renormalization for  $m_t$ 

$$\frac{\delta m_t}{m_t} = \frac{\alpha_s}{\pi} \Gamma(1+\epsilon) \left(\frac{4\pi\mu_R^2}{m_t^2}\right)^{\epsilon} \left(\frac{1}{\epsilon} + \frac{4}{3}\right), \quad \delta_{m_t} = -2\frac{\delta m_t}{m_t} m_t^2 \frac{\partial \mathcal{M}_{\rm LO}}{\partial m_t^2}$$

### • **IR subtraction:** $\delta_{\rm IR} = \frac{\alpha_s}{\pi} \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} \left(\frac{4\pi\mu_R^2}{-m_{HH}^2}\right)^{\epsilon} \left[\frac{3}{2\epsilon^2} + \frac{33-2N_F}{12\epsilon} \left(\frac{\mu_R^2}{-m_{HH}^2}\right)^{-\epsilon} - \frac{11}{4} + \frac{\pi^2}{4}\right] \mathcal{M}_{\rm LO}$



• UV renormalization:  $\delta_{\alpha_s}$ ,  $\delta_g$ ,  $\delta_{m_t}$   $\rightarrow \overline{\text{MS}}$  renormalization for  $\alpha_s$  with 5 active flavors  $N_F = 5$  $\frac{\delta \alpha_s}{\alpha_s} = \frac{\alpha_s}{\pi} \Gamma(1+\epsilon) (4\pi)^{\epsilon} \left[ -\frac{33-2(N_F+1)}{12\epsilon} + \frac{1}{6} \log \left( \frac{\mu_R^2}{m_t^2} \right) \right], \quad \delta_{\alpha_s} = \frac{\delta \alpha_s}{\alpha_s} \mathcal{M}_{\text{LO}}$ 

 $\rightarrow$  Top-quark contribution to the external gluons self-energies

$$\delta_g = \frac{\alpha_s}{\pi} \, \Gamma(1+\epsilon) \left(\frac{4\pi\mu_R^2}{m_t^2}\right)^{\epsilon} \left(-\frac{1}{6\epsilon}\right) \mathcal{M}_{\rm LO}$$

 $\rightarrow$  MS renormalization for  $m_t$ 

$$\frac{\delta m_t}{m_t} = \frac{\alpha_s}{\pi} \Gamma(1+\epsilon) \left(\frac{4\pi\mu_R^2}{m_t^2}\right)^{\epsilon} \left(\frac{1}{\epsilon} - \log\left(\frac{\mu_{R,t}^2}{m_t^2}\right)\right), \quad \delta_{m_t} = -2\frac{\delta m_t}{m_t} m_t^2 \frac{\partial \mathcal{M}_{\rm LO}}{\partial m_t^2}$$

• **IR subtraction:**  
$$\delta_{\rm IR} = \frac{\alpha_s}{\pi} \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} \left(\frac{4\pi\mu_R^2}{-m_{HH}^2}\right)^{\epsilon} \left[\frac{3}{2\epsilon^2} + \frac{33-2N_F}{12\epsilon} \left(\frac{\mu_R^2}{-m_{HH}^2}\right)^{-\epsilon} - \frac{11}{4} + \frac{\pi^2}{4}\right] \mathcal{M}_{\rm LO}$$



#### In topology 6:

Start from the form subtracted form factors  $F_i$ ,

$$\Delta F_{i} = \frac{\alpha_{s}}{\pi} \Gamma(1+2\epsilon) \left(\frac{4\pi\mu_{0}^{2}}{m_{t}^{2}}\right)^{2\epsilon} (G_{1}+G_{2}),$$

$$G_{1} = \int_{0}^{1} d^{6}x \ x^{1+\epsilon} (1-x)^{\epsilon} r^{1+\epsilon} s^{-\epsilon} \left\{\frac{H_{i}(\vec{x})}{N^{3+2\epsilon}(\vec{x})} - \frac{H_{i}(\vec{x})|_{r=0}}{N_{0}^{3+2\epsilon}(\vec{x})}\right\},$$

$$G_{2} = \int_{0}^{1} d^{6}x \ x^{1+\epsilon} (1-x)^{\epsilon} r^{1+\epsilon} s^{-\epsilon} \frac{H_{i}(\vec{x})|_{r=0}}{N_{0}^{3+2\epsilon}(\vec{x})}$$

with  $N(\vec{x}) = ar^2 + br + c$ ,  $N_0(\vec{x}) = br + c$ ,  $a, c = O(1/m_t^2)$ ,  $b = 1 + O(1/m_t^2)$ .

Analytical integration of  $G_2$  gives rise to hypergeometric functions

$$G_{2} = \frac{1}{2+\epsilon} \int_{0}^{1} d^{5}x \frac{x^{1+\epsilon}(1-x)^{\epsilon}s^{-\epsilon}}{c^{3+2\epsilon}} {}_{2}F_{1}\left(3+2\epsilon,2+\epsilon;3+\epsilon;-\frac{b}{c}\right) H_{i}(\vec{x})\big|_{r=0}$$



### **Building the local IR counterterm:**

$$d\Delta \hat{\sigma}_{ij}^{\mathrm{mass}} = d\Delta \hat{\sigma}_{ij} - d\hat{\sigma}_{\mathrm{LO}} \frac{d\Delta \hat{\sigma}_{ij}^{\mathrm{HTL}}}{d\hat{\sigma}_{\mathrm{LO}}^{\mathrm{HTL}}}$$

Local IR counterterm with a projected on-shell LO 2  $\rightarrow$  2 kinematics to rescale the 2  $\rightarrow$  3 HTL

 $2 \rightarrow 2 \; OS \; LO \; from$   $_{[Catani, \; Seymour, \; NPB \; 485 \; (1997) \; 291]}$  with initial-state emitter, initial-state spectator



### **Building the local IR counterterm:**

$$d\Delta \hat{\sigma}_{ij}^{ ext{mass}} = d\Delta \hat{\sigma}_{ij} - d\hat{\sigma}_{ ext{LO}} \frac{d\Delta \hat{\sigma}_{ij}^{ ext{HTL}}}{d\hat{\sigma}_{ ext{LO}}^{ ext{HTL}}}$$

Local IR counterterm with a projected on-shell LO 2  $\rightarrow$  2 kinematics to rescale the 2  $\rightarrow$  3 HTL

 $2 \rightarrow 2~OS~LO$  from  $_{[Catani,~Seymour,~NPB~485~(1997)~291]}$  with initial-state emitter, initial-state spectator



### **Building the local IR counterterm:**

$$m{d}\Delta\hat{\sigma}_{ij}^{ ext{mass}}=m{d}\Delta\hat{\sigma}_{ij}-m{d}\hat{\sigma}_{ ext{LO}}rac{m{d}\Delta\hat{\sigma}_{ij}^{ ext{HTL}}}{m{d}\hat{\sigma}_{ ext{LO}}^{ ext{HTL}}}$$

Local IR counterterm with a projected on-shell LO 2  $\rightarrow$  2 kinematics to rescale the 2  $\rightarrow$  3 HTL

 $2 \rightarrow 2 \mbox{ OS LO from}$   $_{[Catani, \mbox{ Seymour, NPB 485 (1997) 291}]}$  with initial-state emitter, initial-state spectator

### $\Rightarrow$ Mass effects IR safe in the real corrections



### More on the scale-and-scheme uncertainty

- Electroweak symmetry sum rule  $y_t \sqrt{2}m_t/v = 0$   $\Rightarrow$  no rationale behind separating the treatment of the top-quark in Yukawa couplings from the top-quark propagator masses
- Conversion from OS pole mass to MS mass at N<sup>3</sup>LO [Gray, Broadhurst, Grafe, Schilcher, ZPC 48 (1990) 673; Tarasov, JINR-P2-82-900; Chetyrkin,

PLB 404 (1997) 161]

$$\overline{m}_{t}(m_{t}) = \frac{m_{t}}{1 + 4/3a_{s}(m_{t}) + 10.9a_{s}(m_{t})^{2} + 107.11a_{s}(m_{t})^{3}}, \quad a_{s}(\mu) = \frac{\alpha_{s}(\mu)}{\pi}$$
$$\overline{m}_{t}(\mu_{t}) = \overline{m}_{t}(m_{t})\frac{c[a_{s}(\mu_{t})]}{c[a_{s}(m_{t})]}, \quad c(x) = \left(\frac{7}{2}x\right)^{\frac{4}{7}}(1 + 1.398x + 1.793x^{2} - 0.6834x^{3})$$

With  $m_t = 172.5 \text{ GeV}, \, \overline{m}_t(\overline{m}_t) = 163.01516... \text{ GeV}$