

Lucas Pinol With J. Martin, T. Papanikolaou, V. Vennin Institut d'Astrophysique de Paris (IAP)

PREHEATING INSTABILITY

AND THE FORMATION OF PRIMORDIAL BLACK HOLES

European Research Council Established by the European Commission

WHAT I AM NOT GOING TO TALK ABOUT

MULTI-FIELD INFLATION PHENOMENOLOGY

GEOMETRICAL ASPECTS OF CURVED FIELD SPACE (Bispectrum, single-field EFT, etc.)

[J. Fumagalli, S. Garcia-Saenz, L. Pinol, S. Renaux-Petel, J. Ronayne 2019] [S. Garcia-Saenz, L. Pinol, S. Renaux-Petel, 2019]

MULTI-FIELD STOCHASTIC FORMALISM

EXTENSION TO CURVED FIELD SPACE (Langevin and Fokker-Planck equations, covariance, etc.)

[L. Pinol, S. Renaux-Petel, Y. Tada 2018] [L. Pinol, S. Renaux-Petel, Y. Tada (to appear soon)]

MULTI-FIELD / MULTI-FLUID REHEATING COUPLING SCALAR FIELDS TO COSMOLOGICAL FLUIDS (Isocurvature modes, etc.) [J. Martin, L. Pinol (to appear some day)]

WHAT I AM GOING TO TALK ABOUT

I. THE EARLY UNIVERSE A CONSISTENT COSMOLOGICAL STORY

II. PREHEATING INSTABILITY SMALL SCALES GOING CRAZY

III. PBH FORMATION DURING PREHEATING A GENERIC MECHANISM

IV. PERTURBATIVE DECAYS WHEN PREHEATING MEETS REHEATING

I. THE EARLY UNIVERSE

A CONSISTENT COSMOLOGICAL STORY

VERY BROAD PICTURE

Warm-up, (re)heating

- Cosmology: history, content and laws of the Universe
- Early Universe: before emission of the CMB

CMB OBSERVATION MOTIVATES INFLATION

$$T \sim 2.73K$$
; $\frac{\delta T}{T} \sim 10^{-5}$; $|\Omega_k| \ll 1$

- How is the universe so homogeneous?
 Horizon problem
- Why is the universe so spatially flat?Flatness problem

CMB OBSERVATION MOTIVATES INFLATION

$$T \sim 2.73K$$
; $\frac{\delta T}{T} \sim 10^{-5}$; $|\Omega_k| \ll 1$

- How is the universe so homogeneous?
 Horizon problem
- Why is the universe so spatially flat?Flatness problem

Inflation, an era of accelerated expansion of the Universe, solves both the horizon and flatness problems

• Quasi de Sitter space: $\epsilon = -\frac{\dot{H}}{H^2} \ll 1$; $\eta = \frac{\dot{\epsilon}}{H\epsilon} \ll 1$

$$\Rightarrow \frac{M_p V'}{V} \ll 1 ; \frac{M_p^2 |V''|}{V} \ll 1$$

PBH meeting 1, IEA "Primordial black holes from cosmological inflation", May 2020, Lucas Pinol

Transition between:

Inflation – Universe filled by scalar field(s) Radiation-dominated era – Universe filled by SM particles

Transition between:

Inflation – Universe filled by scalar field(s) Radiation-dominated era – Universe filled by SM particles

While oscillating, the inflaton decays on large scales: preheating

Transition between:

Inflation – Universe filled by scalar field(s) Radiation-dominated era – Universe filled by SM particles

While oscillating, the inflaton decays on large scales: preheating

But not enough to disappear + also need to produce SM particles

Perturbative reheating $\ddot{\phi} + 3H \dot{\phi} + \Gamma \dot{\phi} + V'(\phi) = 0$

Transition between:

Inflation – Universe filled by scalar field(s) Radiation-dominated era – Universe filled by SM particles

- While oscillating, the inflaton decays on large scales: preheating
- But not enough to disappear + also need to produce SM particles

Perturbative reheating $\ddot{\phi} + 3H \dot{\phi} + \Gamma \dot{\phi} + V'(\phi) = 0$

- Few strategies to get this equation:
 - Add a decay term phenomenologically (what about perturbations?)
 - Coupling the inflaton to another scalar field believed to be a « proxy » for SM particles, study this decay
 - Coupling the inflaton directly to a cosmological fluid like radiation

II. PREHEATING INSTABILITY

SMALL SCALES GOING CRAZY

[K. Jedamzik, M. Lemoine, J. Martin 2010]

PREHEATING

ALL ABOUT OSCILLATIONS

PREHEATING

ALL ABOUT OSCILLATIONS

Background: coherent oscillations of the scalar field

$$\phi(t) \simeq \phi_{\text{end}} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \sin(mt)$$

Overall amplitude of the oscillations

 $\rho_{\phi} \sim a^{-3}$ redshifts as pressureless matter

PREHEATING

ALL ABOUT OSCILLATIONS

Damped oscillations

Equipartition of energy during oscillations

ALL ABOUT OSCILLATIONS

Background: coherent oscillations of the scalar field

$$\phi(t) \simeq \phi_{\text{end}} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \sin(mt)$$

Overall amplitude of the oscillations

 $\rho_{\phi} \sim a^{-3}$ redshifts as pressureless matter

Perturbations:

 $\chi_k = \sqrt{a} v_k$ verifies a Mathieu equation Sasaki-Mukhanov variable

$$\frac{d^2\chi_k}{dz^2} + (A_k - 2q\cos(2z))\chi_k = 0$$

with

$$\begin{cases} A_k = 1 + \frac{k^2}{m^2 a^2} \\ q = \frac{\sqrt{6}}{2} \frac{\phi_{\text{end}}}{M_p} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \end{cases}$$

ALL ABOUT OSCILLATIONS

Background: coherent oscillations of the scalar field

$$\phi(t) \simeq \phi_{\text{end}} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \sin(mt)$$

Overall amplitude of the oscillations

 $\rho_{\phi} \sim a^{-3}$ redshifts as pressureless matter

Perturbations:

 $\chi_k = \sqrt{a}v_k$ verifies a Mathieu equation

$$\frac{d^2\chi_k}{dz^2} + (A_k - 2q\cos(2z))\chi_k = 0$$

Instability bands of the Mathieu equation

ALL ABOUT OSCILLATIONS

Background: coherent oscillations of the scalar field

$$\phi(t) \simeq \phi_{\text{end}} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \sin(mt)$$

Overall amplitude of the oscillations

 $\rho_{\phi} \sim a^{-3}$ redshifts as pressureless matter

Perturbations:

 $\chi_k = \sqrt{a}v_k$ verifies a Mathieu equation

$$\frac{d^2\chi_k}{dz^2} + (A_k - 2q\cos(2z))\chi_k = 0$$

with
$$\begin{cases} A_k = 1 + \frac{k^2}{m^2 a^2} \\ q = \frac{\sqrt{6}}{2} \frac{\phi_{\text{end}}}{M_p} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \end{cases}$$

Dynamically, $\begin{cases} A_k \to 1 \\ q \to 0 \end{cases}$

ALL ABOUT OSCILLATIONS

Background: coherent oscillations of the scalar field

$$\phi(t) \simeq \phi_{\text{end}} \left(\frac{a_{\text{end}}}{a}\right)^{3/2} \sin(mt)$$

Overall amplitude of the oscillations

 $\rho_{\phi} \sim a^{-3}$ redshifts as pressureless matter

Perturbations:

$$\chi_k = \sqrt{a} v_k$$
 verifies a Mathieu equation

$$\frac{d^2\chi_k}{dz^2} + (A_k - 2q\cos(2z))\chi_k = 0$$

First instability band

METRIC PREHEATING INSTABILITY BAND FOR LINEAR PERTURBATIONS

Modes are in the instability band if:

$$A_k < 1 + q$$

$$\checkmark$$

$$\sqrt{3Hm} < k/a < H$$

INSTABILITY BAND FOR LINEAR PERTURBATIONS

[K. Jedamzik, M. Lemoine, J. Martin 2010]

Modes are in the instability band if:

 $\sqrt{3Hm} < k/a < H$

Modes can enter:

From above as $H^{-1} \sim a^{3/2}$

> From below as $(3Hm)^{-1/2} \sim a^{3/4}$

Then they stay in the band (until oscillations stop)

METRIC PREHEATING INSTABILITY BAND FOR LINEAR PERTURBATIONS 10¹⁰ [K. Jedamzik, M. Lemoine, J. Martin 2010] 10⁵ M_{Pl}/H $_{---}$ $M_{Pl}/(3Hm)^{1/2}$ \dots M_{Pl}/ k_{phys} 10⁰ Φ_k is constant $\delta \rho_k / \rho$ 10⁻⁵ ζ_k is constant $\delta_k = \frac{\delta \rho_{\phi}^k}{\rho_{\phi}}$ is exponentially growing 10⁻¹⁰ 55 65 50 60 E-fold number N

INSTABILITY BAND FOR LINEAR PERTURBATIONS

Scalar power spectrum peaked on small scales

Secondary, induced GWs
 [K. Jedamzik, M. Lemoine, J. Martin 2010]

Primordial black holes
 [J. Martin, T. Papanikolaou, V. Vennin 2019]

 Φ_k is constant

_k is constant

 $\delta_k = \frac{\delta \rho_{\phi}^k}{\rho_{\phi}}$ is exponentially growing

III. PBH FORMATION DURING PREHATING

A GENERIC MECHANISM

[J. Martin, T. Papanikolaou, V. Vennin 2019]

FORMATION CRITERION

PBH meeting 1, IEA "Primordial black holes from cosmological inflation", May 2020, Lucas Pinol

$$\Delta t_{\text{collapse}}(k) = \frac{\pi}{\left(H \,\delta_k^{3/2}\right)|_{t_{\text{b.c.}}(k)}}$$

[S. M. C. V. Goncalves 2000]

FORMATION CRITERION

 $\Delta t_{\text{collapse}}(k) = \frac{\pi}{\left(H \, \delta_k^{3/2}\right)|_{t_{\text{b.c.}}(k)}}$ Criterion for PBH formation: $\Delta t_{\text{collapse}} < \Delta t_{\text{instab}}$

PBH meeting 1, IEA "Primordial black holes from cosmological inflation", May 2020, Lucas Pinol

SURVIVAL CRITERION

SURVIVAL CRITERION

 $\Delta t_{\text{evap}}(k) = \frac{10240}{g} \frac{M(k)^3}{M_p^4}$

Criterion for PBH at the end of the instability:

$$\Delta t_{\rm collapse} + \Delta t_{\rm evap} > \Delta t_{\rm instab}$$

SURVIVAL CRITERION

 $\Delta t_{\text{collapse}}(k) = \frac{1}{\left(H \,\delta_k^{3/2}\right)|_{t_{\text{b.c.}}(k)}}$ **Criterion for PBH formation:** $\Delta t_{\rm collapse} < \Delta t_{\rm instab}$ $\Delta t_{\rm evap}(k) = \frac{10240}{g} \frac{M(k)^3}{M_{\rm p}^4}$ Criterion for PBH at the end of the instability: $\Delta t_{\rm collapse} + \Delta t_{\rm evap} > \Delta t_{\rm instab}$

MASS FRACTION AT THE END OF THE INSTABILITY

$$\delta_c(k) < \delta_k < \delta_{\max}(k)$$

$$\uparrow \qquad \uparrow$$

Formation

• Survival

• Perturbativity $(\delta_k|_{t_{\text{b.c.}}(k)} < 1)$

$$\beta(M(k), t_{\Gamma}) = 2 \int_{\delta_c(k)}^{\delta_{\max}(k)} P(\delta) d \delta$$

MASS FRACTION AT THE END OF THE INSTABILITY

$$\delta_c(k) < \delta_k < \delta_{\max}(k)$$

$$\uparrow \qquad \uparrow$$

Formation

• Survival

• Perturbativity $(\delta_k|_{t_{\text{b.c.}}(k)} < 1)$

$$\beta(M(k), t_{\Gamma}) = 2 \int_{\delta_c(k)}^{\delta_{\max}(k)} P(\delta) d \delta$$

The longer the instability: the more PBHs the more massive they are

PBH meeting 1, IEA "Primordial black holes from cosmological inflation", May 2020, Lucas Pinol

OVERPRODUCTION AND CONSTRAINTS FROM BBN

Unphysical of course!

- If the instability lasts long enough, $\Omega_{PBH} > 1$
 - When large scales collapse, they can already include smaller black holes: counted twice
 - > When PBHs are copiously produced, they modify the background dynamics: premature ending

OVERPRODUCTION AND CONSTRAINTS FROM BBN

- If the instability lasts long enough, $\Omega_{PBH} > 1$
 - When large scales collapse, they can already include smaller black holes: counted twice
 - > When PBHs are copiously produced, they modify the background dynamics: premature ending
- Evolving the mass fraction to BBN
 - Redshift, Hawking evaporation, etc.
 - If too many black holes survive, constrains parameter space

OVERPRODUCTION AND CONSTRAINTS FROM BBN

- If the instability lasts long enough, $\Omega_{PBH} > 1$
 - When large scales collapse, they can already include smaller black holes: counted twice
 - > When PBHs are copiously produced, they modify the background dynamics: premature ending
- Evolving the mass fraction to BBN
 - Redshift, Hawking evaporation, etc.
 - If too many black holes survive, constrains parameter space

Here, constraints on the duration of the instability

PBH meeting 1, IEA "Primordial black holes from cosmological inflation", May 2020, Lucas Pinol

AN EVER-LASTING INSTABILITY?

How does the instability stop?!

In this work, the end was just parametrized by the time t_{Γ} , or ρ_{Γ}

Realistically, couplings to SM+DM fields (reheating)

Could it actually spoil the whole instability?

IV. PERTURBATIVE DECAYS

WHEN PREHEATING MEETS REHEATING

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

PBH meeting 1, IEA "Primordial black holes from cosmological inflation", May 2020, Lucas Pinol

TO ANOTHER SCALAR FIELD

[L Kofman, A. Linde, A. Starobinsky 1997]

- > This other scalar then decays in SM+DM particles
- > Microphysics easy to discuss as only scalar fields: $\mathcal{L}_{int} = -2g^2\sigma\phi\chi^2$

TO ANOTHER SCALAR FIELD

[L Kofman, A. Linde, A. Starobinsky 1997]

- This other scalar then decays in SM+DM particles
- Microphysics easy to discuss as only scalar fields:
- > Effectively modifies the e.o.m. for ϕ as:

$$\mathcal{L}_{int} = -2g^2 \sigma \phi \chi^2$$
$$\ddot{\phi} + 3H \dot{\phi} + \Gamma \dot{\phi} + V'(\phi) = 0,$$
With $\Gamma = \frac{g^4 \sigma^2}{2\pi m}$

Additional damping that ends the oscillating phase

TO ANOTHER SCALAR FIELD

[L Kofman, A. Linde, A. Starobinsky 1997]

- This other scalar then decays in SM+DM particles
- Microphysics easy to discuss as only scalar fields:
- > Effectively modifies the e.o.m. for ϕ as:

$$\mathcal{L}_{\rm int} = -2g^2\sigma\phi\chi^2$$

 $\ddot{\phi} + 3H\,\dot{\phi} + \Gamma\dot{\phi} + V'(\phi) = 0,$

Both perturbative and <u>non-perturbative</u> effects: « usual » preheating

$$\frac{d^2X}{dz^2} + (A - 2q\cos(2z))X = 0$$

With $X = a^{3/2}\chi$

Copious production of χ particles: Bose enhancement

TO ANOTHER SCALAR FIELD

[L Kofman, A. Linde, A. Starobinsky 1997]

- This other scalar then decays in SM+DM particles
- Microphysics easy to discuss as only scalar fields:
- > Effectively modifies the e.o.m. for ϕ as:

$$\mathcal{L}_{\rm int} = -2g^2\sigma\phi\chi^2$$

 $\ddot{\phi} + 3H\,\dot{\phi} + \Gamma\dot{\phi} + V'(\phi) = 0,$

Both perturbative and non-perturbative effects:

 $\frac{d^2X}{dz^2} + (A - 2q\cos(2z))X = 0$

With $X = a^{3/2} \chi$

Very insteresting physics

But does not lead to radiation-dominated era

At least not with photons, etc.

PBH meeting 1, IEA "Primordial black holes from cosmological inflation", May 2020, Lucas Pinol

TO A COSMOLOGICAL FLUID

1 scalar field = 2 interacting cosmological fluids

[K. Malik, D.Wands 2008]

Cosmological fluid

Constant equation of state $w = P/\rho$

Remember for a single scalar-field

 $w = \frac{P}{\rho} = \frac{E_k - E_p}{E_k + E_p} \left(= \frac{\rho_K w_K + \rho_V w_V}{\rho_k + \rho_V} \right)$

As if the universe was filled by two cosmological fluids with:

 $\rho_K = E_k; w_K = 1: \text{Kinetic fluid}$ $\rho_V = E_p; w_V = -1: \text{Potential fluid}$

TO A COSMOLOGICAL FLUID

> 1 scalar field = 2 interacting cosmological fluids

> Interacting cosmological fluids are characterized by:

 $T_{\mu\nu} = \sum_{(\alpha)} T_{\mu\nu}^{(\alpha)} \text{ and } \nabla^{\mu} T_{\mu\nu} = 0 \text{ but } \nabla^{\mu} T_{\mu\nu}^{(\alpha)} = \sum_{(\beta)} Q_{\nu}^{(\alpha) \to (\beta)}$ $Q_{\nu}^{(\alpha) \to (\beta)} = Q^{(\alpha) \to (\beta)} u_{\nu} + f_{\nu}^{(\alpha) \to (\beta)} \text{ interactions}$

Energy transfer Momentum transfer

[K. Malik, D.Wands 2008]

Remember for a single scalar-field

$$w = \frac{P}{\rho} = \frac{E_k - E_p}{E_k + E_p} \left(= \frac{\rho_K w_K + \rho_V w_V}{\rho_k + \rho_V} \right)$$

As if the universe was filled by two cosmological fluids with:

 $\rho_K = E_k; w_K = 1: \text{Kinetic fluid}$ $\rho_V = E_p; w_V = -1: \text{Potential fluid}$

TO A COSMOLOGICAL FLUID

1 scalar field = 2 interacting cosmological fluids

> Interacting cosmological fluids are characterized by:

$$T_{\mu\nu} = \sum_{(\alpha)} T^{(\alpha)}_{\mu\nu}$$
 and $\nabla^{\mu}T_{\mu\nu} = 0$ but $\nabla^{\mu}T^{(\alpha)}_{\mu\nu} = \sum_{(\beta)} Q^{(\alpha) \to (\beta)}_{\nu}$

$$Q_{\nu}^{(\alpha) \to (\beta)} = Q^{(\alpha) \to (\beta)} u_{\nu} + f_{\nu}^{(\alpha) \to (\beta)}$$

 \succ Interactions between Kinetic and Potential fluids are set by the known e.o.m. for ϕ

$$a\bar{Q}_{K\to V} = -\phi' V_{\phi}$$
 and $a\bar{Q}_{V\to K} = 0$, etc.

Until now, just a different description for a single scalar field

[K. Malik, D.Wands 2008]

Remember for a single scalar-field

$$w = \frac{P}{\rho} = \frac{E_k - E_p}{E_k + E_p} \left(= \frac{\rho_K w_K + \rho_V w_V}{\rho_k + \rho_V} \right)$$

As if the universe was filled by two cosmological fluids with:

 $\rho_K = E_k$; $w_K = 1$: Kinetic fluid $\rho_V = E_p$; $w_V = -1$: Potential fluid

TO A COSMOLOGICAL FLUID

1 scalar field = 2 interacting cosmological fluids

Interacting cosmological fluids are characterized by:

 $T_{\mu\nu} = \sum_{(\alpha)} T^{(\alpha)}_{\mu\nu}$ and $\nabla^{\mu}T_{\mu\nu} = 0$ but $\nabla^{\mu}T^{(\alpha)}_{\mu\nu} = \sum_{(\beta)} Q^{(\alpha) \to (\beta)}_{\nu}$

$$Q_{\nu}^{(\alpha) \to (\beta)} = Q^{(\alpha) \to (\beta)} u_{\nu} + f_{\nu}^{(\alpha) \to (\beta)}$$

 \succ Interactions between Kinetic and Potential fluids are set by the known e.o.m. for ϕ

$$a\bar{Q}_{K\to V} = -\phi' V_{\phi}$$
 and $a\bar{Q}_{V\to K} = 0$, etc.

> Add a third cosmological fluid f with e.o.s. w_f which interacts as

 $Q^{\mu}_{K\to f}=\Gamma T^{\mu\nu}_{K}u^{K}_{\nu}$

Choice of description of the microphysics Covariant, non-perturbative [K. Malik, D.Wands 2008]

Remember for a single scalar-field

$$w = \frac{P}{\rho} = \frac{E_k - E_p}{E_k + E_p} \left(= \frac{\rho_K w_K + \rho_V w_V}{\rho_k + \rho_V} \right)$$

As if the universe was filled by two cosmological fluids with:

 $\rho_K = E_k$; $w_K = 1$: Kinetic fluid $\rho_V = E_p$; $w_V = -1$: Potential fluid

TO A COSMOLOGICAL FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

> Modified e.o.m. for ϕ (background): $\phi'' + 2\mathcal{H}\phi' + \frac{a\Gamma}{2}\phi' + V_{\phi} = 0$,

TO A COSMOLOGICAL FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

> Modified e.o.m. for ϕ (background): $\phi'' + 2\mathcal{H}\phi' + \frac{a\Gamma}{2}\phi' + V_{\phi} = 0$,

> But also for the perturbations (momentum transfer needed):

$$\delta\phi^{(\mathrm{gi})''} + 2\mathcal{H}\delta\phi^{(\mathrm{gi})'} + \frac{a\Gamma}{2}\delta\phi^{(\mathrm{gi})'} - \nabla^2\delta\phi^{(\mathrm{gi})} + a^2V_{\phi\phi}\delta\phi^{(\mathrm{gi})} = 4\phi'\Phi' - 2a^2V_{\phi}\Phi - \frac{a\Gamma}{2}\phi'\Phi.$$
(3.23)

Not just the naive modification expected from the background one

TO A COSMOLOGICAL FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

> Modified e.o.m. for ϕ (background): $\phi'' + 2\mathcal{H}\phi' + \frac{a\Gamma}{2}\phi' + V_{\phi} = 0$,

> But also for the perturbations (momentum transfer needed):

$$\delta\phi^{(\mathrm{gi})\prime\prime} + 2\mathcal{H}\delta\phi^{(\mathrm{gi})\prime} + \frac{a\Gamma}{2}\delta\phi^{(\mathrm{gi})\prime} - \nabla^2\delta\phi^{(\mathrm{gi})} + a^2V_{\phi\phi}\delta\phi^{(\mathrm{gi})} = 4\phi'\Phi' - 2a^2V_{\phi}\Phi - \frac{a\Gamma}{2}\phi'\Phi.$$
(3.23)

Not just the naive modification expected from the background one

> And for the fluid (background + energy and velocity perturbations)

$$\rho_f' + 3\mathcal{H}(1+w_f)\rho_f - \frac{\Gamma}{2a}\phi'^2 = 0, \quad \text{etc}$$

Sourced by the decays of the inflaton

TO A COSMOLOGICAL FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

> Modified e.o.m. for ϕ (background): $\phi'' + 2\mathcal{H}\phi' + \frac{a\Gamma}{2}\phi' + V_{\phi} = 0$,

But also for the perturbations (momentum transfer needed):

$$\delta\phi^{(\mathrm{gi})\prime\prime} + 2\mathcal{H}\delta\phi^{(\mathrm{gi})\prime} + \frac{a\Gamma}{2}\delta\phi^{(\mathrm{gi})\prime} - \nabla^2\delta\phi^{(\mathrm{gi})} + a^2V_{\phi\phi}\delta\phi^{(\mathrm{gi})} = 4\phi'\Phi' - 2a^2V_{\phi}\Phi - \frac{a\Gamma}{2}\phi'\Phi.$$
(3.23)

Not just the naive modification expected from the background one

> And for the fluid (background + energy and velocity perturbations)

$$\rho_f' + 3\mathcal{H}(1+w_f)\rho_f - \frac{\Gamma}{2a}\phi'^2 = 0, \quad \text{etc}$$

Sourced by the decays of the inflaton

Set of equations that can be consistently solved numerically

Background

TO A <u>RADIATION</u> FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

> We choose here: • $V(\phi) = \frac{1}{2}m^2\phi^2$, with $m = 10^{-5}M_p$ • $w_f = \frac{1}{3}$ • $\Gamma = 10^{-7}M_p$

Background energy transferred from inflaton to radiation

TO A <u>RADIATION</u> FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

Scalar field density contrast still unstable and exponentially growing during oscillations

> Instability stops around N_{Γ} when $H(N_{\Gamma}) \sim \Gamma$ as expected

 Continuous transition to radiation-domination
 (background+perturbations)

Perturbations

e.o.s. of the Universe

TO A <u>RADIATION</u> FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

Claims in the litterature that:

Single, perfect fluid sytem

- Oscillations phase = pressureless perturbations in a matter-dominated Universe
- > Effective equation of state $w_{eff} = \frac{w_f}{2w_f + 1} \frac{2}{9} \frac{\Gamma}{H} \ll 1$ during the oscillations
- > Then used to predict abundance of PBHs due to deviation from w = 0

e.o.s. of the Universe

TO A <u>RADIATION</u> FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

Claims in the litterature that:

- Oscillations phase = pressureless perturbations in a matter-dominated Universe
- > Effective equation of state $w_{eff} = \frac{w_f}{2w_f + 1} \frac{2}{9} \frac{\Gamma}{H} \ll 1$ during the oscillations
- > Then used to predict abundance of PBHs due to deviation from w = 0

Many mistakes and in particular:

Approximation for w not accurate for a long time

 \blacktriangleright *w*_{background} \neq *w*_{perturbations}

TO A <u>RADIATION</u> FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

w_{eff} forgets about oscillations

> The time scale of averaging is crucial

 $> w_{eff}$ is not accurate while PBH production is highly sensitive to it

1.00 $w_{\rm bg}$ 0.200.75 $\langle w_{\rm bg} \rangle_{0.2}$ 0.15 - $\langle w_{\rm bg} \rangle_{0.1}$ 0.50 -0.10 - $\frac{w_{\rm f}}{2w_{\rm f}+1}\frac{2}{9}\frac{\Gamma}{H}$ 0.05 -0.250.00 0.00-0.25-0.50-0.75-1.00-2-6-420 $N - N_{\rm end}$

e.o.s. of the Universe

TO A <u>RADIATION</u> FLUID

[J. Martin, T. Papanikolaou, L. Pinol, V. Vennin 2020]

 \succ w_{eff} forgets about oscillations

> The time scale of averaging is crucial

 $\succ w_{eff}$ is not accurate while PBH production is highly sensitive to it

Metric preheating cannot be understood as single perfect fluid system

e.o.s. of the Universe

CONCLUSION

- Metric preheating is a linear instability for small scales during oscillations after inflation
- It can be understood with the formalism of Mathieu equations and Mathieu charts
- It leads to the generation of secondary GWs and formation of PBHs
- PBHs are copiously produced in this generic mechanism, which places constraints on reheating
- Perturbative reheating with decays of the inflaton to cosmological fluids does not spoil the instability
- Preheating and reheating together are complex phenomena and cannot be oversimplified

THANKS FOR YOUR ATTENTION!