

# Stochastic « Inflation » in the phase space

Julien Grain & Vincent Vennin

Based on :

- Grain, Vennin, 2017, JCAP, 1705, 045 ; 2020, JCAP, 2002, 022 ; & arXiv : 2005.04222
- Grain, Vennin, many papers in prep. (~140 pages in notes and drafts)

### Oulline

### e Going to the phase space

motivation, Langevin equations in phase space

### • Exemple of a test field

Diffusion away from slow-roll, stochastic anisotropies

Grain, Vennin, 2017, JCAP, 1705, 045 ; 2020, JCAP, 2002, 022 ; & arXiv : 2005.04222

### • Separate universe & gauge-correction Readdress Pattison et al. 2019 from the phase space perspective

Work in progress: Grain, Vennin, many papers in prep. (~140 pages in drafts)

## slow-roll inflation

Slow-roll approximation:  $3H\dot{\phi} + \frac{dV}{d\phi} = 0$ 



SR is an attractor
SR simplifies a 2D dynamics into a 1D dynamics
SR attractor can be generalized to a test scalar field in quasi-ds background

White noise

Stochastic diffusion:  $3H\dot{\phi} + \frac{dV(\phi)}{d\bar{\phi}} = \tilde{\xi}_{\sigma}(t)$ 

Drift evolution and diffusion are 1-dimensional

## Beyond slow-roll inflation

### <u>Ultra-slow-roll</u>: $V(\phi) = V_0$

-> Field momentum is conserved

 $\phi(t) = \phi_0 + \pi_0 \int_{t_0}^t \frac{dt'}{a^3(t')}$  $\pi(t) = \pi_0$ 

#### Bouncing cosmologies:

-> inflow of Q-fluctuations to large-scale classical perturbations



#### For instance

- Inoue et al., PLB, 2002, 524, 15
- Kinney, PRD, 2005, 72, 023515
- Pattison et al. JCAP, 2018, 1808, 048
- Biagetti et al., JCAP, 2018, 1807, 032
- Ezquiaga et al., JCAP, 2020, 2003, 029

#### For instance

- Khoury et al., PRD, 2001, 64, 123522
- Barrau et al., CQG, 2014, 31, 053001
- Brandenberger & Peter, Found. Phys, 2017, 47, 797
- Agullo & Singh, arXiv:1612.0123

## Beyond slow-roll inflation

### <u>Ultra-slow-roll:</u> $V(\phi) = V_0$

-> Field momentum is conserved

 $\phi(t) = \phi_0 + \pi_0 \int_{t_0}^t \frac{dt'}{a^3(t')}$  $\pi(t) = \pi_0$ 

#### Bouncing cosmologies:

#### $\rightarrow$ test free scalar-field in contracting universe (w=0)

## <u>m<H</u>: friction dominated regime à la USR $\phi(t) \simeq \phi_m + \pi_m \int_{t_m}^t \frac{dt'}{a^3(t')}$ $\pi(t) \simeq \pi_m$

For instance

• m > H: oscillatory regime in P.S.

For « inflaton » field, see example in LQC:

- Linsefors & Barrau, PRD, 2013, 123509
- Bolliet et al., PRD, 2015, 91, 084035
- Schander et al., PRD, 2016, 93, 023531



- Ezquiaga et al., JCAP, 2020, 2003, 029

- Inoue et al., PLB, 2002, 524, 15

Kinney, PRD, 2005, 72, 023515

## Going to the phase space

Beyond slow-roll: 2-dimensional dynamics
Full Klein-Gordon Equation (1 second order ODE)
Hamiltonian formalism (2 coupled first order ODE's)

•Langevin equations are more easily formulated as 1st order system of ODE's

-> Fokker-Planck equation and PDF in the phase space, use of canonical transformation

#### •Noise is of quantum origin

-> quantization (and classicalization) is more « naturally » done using Hamiltonian formalism

• SR corresponds to a specific direction in the phase space -> « Is there diffusion away from SR ? » becomes « is the noise strongly pointing away from SR in the phase space ? »

- Nakao, Nambu, Sasaki, 1988, Prog. Th. Phys, 80, 1041
- Kandrup, 1989, PRD, 39, 2245
- Habib, 1992, PRD, 46, 2408
- Grain, Vennin, 2017, JCAP, 1705, 045

## stochastic inflation in P.S.

1. Split the field in long- & small-wavelength  $\Phi_i \equiv \begin{pmatrix} \phi \\ \pi \end{pmatrix}$  $\Phi = \bar{\Phi} + \Phi_Q$  with  $\Phi_Q = \int d^3k \Theta(k/k_\sigma - 1) \left[ \hat{a}_{\vec{k}} \Phi_k(t) e^{i\vec{k}\vec{x}} + \text{c.c.} \right]$ 

Solution of Hamilton EoM 2. Plug into Hamilton EoM -> Langevin equations in phase space Linearize in  $\phi_Q$ ; neglect gradients for  $\overline{\phi}$ Stochastic large-scale dynamics:  $\frac{d}{d\eta} \left( \begin{array}{c} \overline{\phi} \\ \overline{\pi} \end{array} \right) = \left( \begin{array}{c} \overline{\pi}/a^2 \\ -a^4V_{,\overline{\phi}}(\overline{\phi}) \end{array} \right) + \xi$  with  $\xi \equiv \left( \begin{array}{c} \xi_{\phi} \\ \xi_{\pi} \end{array} \right) \propto \frac{dk_{\sigma}^3}{d\eta} \left[ \hat{a}_{k_{\sigma}} \Phi_{k_{\sigma}}(\eta) e^{i\vec{k}\cdot\vec{x}} + c.c. \right]$ Small-wevelength dynamics:  $\frac{d}{d\eta} \left( \begin{array}{c} \phi_k \\ \pi_k \end{array} \right) = \left( \begin{array}{c} \overline{\pi}_k/a^2 \\ -[a^2k^2 + a^4V_{,\overline{\phi},\overline{\phi}}] \phi_k \end{array} \right)$ 

3. Noise properties

Gaussian and classical stochastic 2D white noise

Power spectra

$$\langle 0 | \boldsymbol{\xi}_{i}(\eta_{1}) \boldsymbol{\xi}_{j}(\eta_{2}) | 0 \rangle \propto \frac{dk_{\sigma}^{3}}{d\eta} \boldsymbol{\Phi}_{i,k_{\sigma}} \boldsymbol{\Phi}_{j,k_{\sigma}}^{\star} \delta(\eta_{1} - \eta_{2})$$

$$\boldsymbol{\xi} \boldsymbol{\xi}^{\dagger} \propto \frac{1}{2} \left[ \left| \phi_{k_{\sigma}} \right|^{2} + \left| \pi_{k_{\sigma}} \right|^{2} \right] \boldsymbol{I} + \frac{1}{2} \left[ \left| \phi_{k_{\sigma}} \right|^{2} - \left| \pi_{k_{\sigma}} \right|^{2} \right] \boldsymbol{J}_{z} + \operatorname{Re} \left[ \phi_{k_{\sigma}} \pi_{k_{\sigma}}^{\star} \right] \boldsymbol{J}_{x} + \boldsymbol{J}_{y} \right]$$

$$\boldsymbol{\xi} \boldsymbol{\xi}^{\dagger} \propto \frac{1}{2} \left[ \left| \phi_{k_{\sigma}} \right|^{2} + \left| \pi_{k_{\sigma}} \right|^{2} \right] \boldsymbol{I} + \frac{1}{2} \left[ \left| \phi_{k_{\sigma}} \right|^{2} - \left| \pi_{k_{\sigma}} \right|^{2} \right] \boldsymbol{J}_{z} + \operatorname{Re} \left[ \phi_{k_{\sigma}} \pi_{k_{\sigma}}^{\star} \right] \boldsymbol{J}_{x} + \boldsymbol{J}_{y} \right]$$

$$\boldsymbol{\xi} \boldsymbol{\xi}^{\dagger} \propto \frac{1}{2} \left[ \left| \phi_{k_{\sigma}} \right|^{2} + \left| \pi_{k_{\sigma}} \right|^{2} \right] \boldsymbol{I} + \frac{1}{2} \left[ \left| \phi_{k_{\sigma}} \right|^{2} - \left| \pi_{k_{\sigma}} \right|^{2} \right] \boldsymbol{J}_{z} + \operatorname{Re} \left[ \phi_{k_{\sigma}} \pi_{k_{\sigma}}^{\star} \right] \boldsymbol{J}_{x} + \boldsymbol{J}_{y} \right]$$

## stochastic inflation in P.S.

A concrete example : test field with  $V(\phi) = \frac{1}{2}m^2\phi^2$ 

$$\frac{d}{d\eta} \left( \begin{array}{c} \bar{\phi} \\ \bar{\pi} \end{array} \right) = \left( \begin{array}{cc} 0 & 1/a^2 \\ -a^4 m^2 & 0 \end{array} \right) \left( \begin{array}{c} \bar{\phi} \\ \bar{\pi} \end{array} \right) + \boldsymbol{\xi}$$

#### Drift:

-> rapidly aligned with SR

Diffusion: perturbations mass = field's mass Large scales: gradients negligible --> perturbations evolve like the background field: they align with SR attractor

Both drift evolution and noises (hence diffusion) are aligned with SR -> Slow-roll is also stochastic attractor

For details: Grain, Vennin, 2017, JCAP, 1705, 045

### Stochastic anisotropies

#### Consider a Bianchi I space-time: $ds^2 = -dt^2 + a^2(t) \exp[2\beta_i(t)] \delta_{ij} dx^i dx^j$ $H^2 = \frac{\rho}{3M_{\rm Pl}^2} + \frac{1}{2}\sigma_{ij}\sigma^{ij}$ $\dot{H} = -\frac{\rho + P}{2M_{\rm Pl}^2} - \frac{1}{2}\sigma_{ij}\sigma^{ij}$ $\left(\sigma_{j}^{i}\right)^{\cdot} + 3H\sigma_{j}^{i} = \frac{\Pi_{j}^{i}}{M^{2}}$ Evolution of the shear sourced by the anisotropic stress $\dot{\rho} + 3H(\rho + P) = -\sigma_{ij}\Pi^{ij}$ What about Solve for the shear: $\sigma_j^i(t) = \sigma_j^i(t_o) \left[\frac{a_o}{a(t)}\right]^3 + \frac{1}{M_{\rm Pl}^2} \int_{t_o}^t \left[\frac{a(t')}{a(t)}\right]^3 \Pi_j^i(t') dt'$ contributions from anisotropic stress ? Shear as 1/a6 in Friedmann -> Singularity in contraction Stochastic massless scalar field in FLRW: $\Pi_{ij} = \partial_i \phi \partial_j - \frac{1}{3} \left( \gamma^{mn} \partial_m \phi \partial_n \phi \right) \gamma_{ij}$ $\Phi(t) := \begin{pmatrix} \phi \\ \pi_{\phi} \end{pmatrix} = G(t, t_o) \Phi_o + \int_{t}^{t} G(t, s) \boldsymbol{\xi}(s) ds$ $\left\langle \widehat{\Pi}_{j}^{i}(t) \right\rangle = 0$ Homogeneous bokg field $\Pi^i_j=0$ Isotropic 2-pt correlation:

Anisotropic fluctuations (4-pt):  $\left\langle \widehat{\Pi}_{j}^{i}(t) \Pi_{i}^{j}(t') \right
angle 
eq 0$ 

## Stochastic anisotropies

Unvoidable stochastic shear from quantum fluctuations: -> Connected part of 4-point correlation

$$\rho_{\sigma} := \frac{1}{2} \left\langle \sigma_{ij} \sigma^{ij} \right\rangle = \frac{1}{2M_{\rm Pl}^2} \int^t dt_1 \int^t dt_2 \left[ \frac{a(t_1)a(t_2)}{a^2(t)} \right]^3 \left\langle \Pi_j^i(t_1) \Pi_i^j(t_2) \right\rangle \quad \begin{array}{c} \text{Computed from the derivatives of} \\ \text{the field 2-pt function} \end{array}$$

Contraction driven by a perfect fluid with arbitrary w:

$$\frac{\rho_{\sigma}}{\rho_{\text{tot}}} = \epsilon^{4\frac{1+9w}{1+3w}} f(w) \left(\frac{H}{M_{\text{Pl}}^2}\right)^4 \left[\frac{1}{5+27w} - \left(\frac{a}{a_o}\right)^{1+9w} + \frac{3+9w}{(1-9w)^2} \left(\frac{a}{a_o}\right)^{2(1+9w)} + \cdots\right]$$

-> H<Mpl in bouncing cosmology

W > -1/9: shear never exceeds the Planck scale

 $W \le -1/9$ : shear increase above  $M_{Pl}$  because fluctuations spectrum is too red

For details: Grain, Vennin, arXiv : 2005.04222

## Stochastic anisotropies

#### Stochastic shear energy density





-> Stochastic instability if w<-1/9



-> Stochastic instability if w<0

For details: Grain, Vennin, arXiv:2005.04222

Pattison et al. JCAP, 2019, 1907, 031

### Conditions for using the stochastic formalism:

· Quantum-to-classical transition

Does not assume slow-roll, always a 2-mode squeezed state

#### · Validity of the separate universe

superhubble FLRW patches = cosmological perturbations at superhubble scales -> identify local time and expansion to time and expansion of FLRW patch

#### · Gauge-corrections to the noise

Langevin equation in synchronous gauge but noise in other gauges -> Gauge corrections from e.g. spatially-flat to synchronous

Pattison et al. JCAP, 2019, 1907, 031

### Conditions for using the stochastic formalism:

· Quantum-to-classical transition

Does not assume slow-roll, always a 2-mode squeezed state

#### • Validity of the separate universe

superhubble FLRW patches = cosmological perturbations at superhubble scales -> identify local time and expansion to time and expansion of FLRW patch

#### · Gauge-corrections to the noise

Langevin equation in synchronous gauge but noise in other gauges -> Gauge corrections from e.g. spatially-flat to synchronous

Two different perturbative expansions about FLRW

Cosmological perturbations: Inhomogeneous and anisotropic

Lagrange multipliers: 2

 $N(\tau) + \int \frac{d^{3}k}{(2\pi)^{3/2}} \delta N(\vec{k},\tau) e^{i\vec{k}\vec{x}}$  $\int \frac{d^{3}k}{(2\pi)^{3/2}} \delta N_{1}(\vec{k},\tau) \left(\frac{ik^{i}}{k}\right) e^{i\vec{k}\vec{x}}$ 

### Scalar field: 2\*1 $\phi(\tau) + \int \frac{d^3k}{(2\pi)^{3/2}} \delta\phi(\vec{k},\tau) e^{i\vec{k}\vec{x}}$

 $\pi_{\phi}(\tau) + \int \frac{d^3k}{(2\pi)^{3/2}} \delta \pi_{\phi}(\vec{k},\tau) e^{i\vec{k}\cdot\vec{x}}$ 

 $\begin{aligned} & \frac{\text{Gravitational field: 2*2}}{v^{2/3}(\tau)\delta_{ij} + \int \frac{d^3k}{(2\pi)^{3/2}} \left[ \delta\gamma_1(\vec{k},\tau)M_{ij}^1 + \delta\gamma_2(\vec{k},\tau)M_{ij}^2 \right] e^{i\vec{k}\vec{x}} \\ & \frac{1}{2}v^{1/3}\theta(\tau)\delta^{ij} + \int \frac{d^3k}{(2\pi)^{3/2}} \left[ \delta\pi_1(\vec{k},\tau)M_1^{ij} + \delta\pi_2(\vec{k},\tau)M_2^{ij} \right] e^{i\vec{k}\vec{x}} \end{aligned}$ 

Separate Universe: homogeneous and isotropic Lagrange multipliers: 1  $N(\tau) + \widetilde{\delta N}(\tau)$ 

Scalar field: 2\*1  $\phi(\tau) + \widetilde{\delta\phi}(\tau)$  $\pi_{\phi}(\tau) + \widetilde{\delta\pi_{\phi}}(\tau)$ 

Gravitational field: 2\*1  $v^{2/3}(\tau)\delta_{ij} + \widetilde{\delta\gamma_1}(\tau)M^1_{ij}$   $\frac{1}{2}v^{1/3}\theta(\tau)\delta^{ij} + \widetilde{\delta\pi_1}(\tau)M^{ij}_1$ 

Two different perturbative expansions about FLRW

Cosmological perturbations:  $C[N + \delta N, \delta N^{i}] = NS^{(0)} + \int d^{3}x \left( \delta N S^{(1)} + \delta N^{i} \mathcal{D}_{i}^{(1)} + N S^{(2)} \right)$ 

<u>Separate Universe:</u>

 $C[N + \widetilde{\delta N}, 0] = NS^{(0)} + \widetilde{\delta N}S^{(1)} + NS^{(2)}$ 

Comparison at super-Hubble scales, i.e. neglecting (k/a)2

-> Cosmo. pert. constraints become homogeneous and isotropic  $S^{(1)} \simeq S^{(1)} + O(k/a)^2 [\delta \gamma_1 + \delta \gamma_2]$  $S^{(2)} \simeq S^{(2)} + f(\delta \gamma_2, \delta \pi_2) + O(k/a)^2 [\delta \phi^2 + \delta \gamma_1^2 + \delta \gamma_2^2 + \delta \gamma_1 \delta \gamma_2]$ 

> Anisotropic d.o.f. decouples from isotropic d.o.f. at large scales

-> Full dynamics is matched providing the gauges are matched  $\delta N \simeq \widetilde{\delta N} + \mathcal{O}(k/a)^2 [\delta z]$   $\delta N \simeq \widetilde{\delta N} + \mathcal{O}(k/a)^2 [\delta z]$   $k \delta N_1 \simeq \mathcal{O}(k/a)^2 [\delta z]$   $\delta N_1 \simeq \mathcal{O}(k/a)^2 [\delta z]$   $\delta N_1 \simeq \mathcal{O}(k/a)^2 [\delta z]$ 

Validity of separate universe: question of gauge-matching

Is there an analog gauge-fixing in the separate universe?

Spatially-flat gauge:
$$\delta_{Y_1} = 0 = \delta_{Y_2}$$
 $\delta_{\overline{Y_1}} = 0$  $\delta N \propto f(\tau)(\delta \pi_1 + \sqrt{2}\delta \pi_2)$  $\delta \overline{N} = f(\tau)\delta \overline{\gamma_1} + \tilde{g}(\tau)\delta \overline{\pi_1}$  $k\delta N_1 = h(\tau)\delta \pi_2$  $\delta \overline{N} = f(\tau)\delta \overline{\gamma_1} + \tilde{g}(\tau)\delta \overline{\pi_1}$ Newtonian gauge: $\delta \overline{\gamma_2} = 0 = \delta \pi_2$ No counterpart in separate universe $\delta N \propto f(\tau)\delta \gamma_1$  $\delta \overline{N} = ?$  $\delta N \propto f(\tau)\delta \pi_2 = 0$  $\delta \overline{N} = ?$  $\delta N \propto f(\tau)\delta \pi_2 = 0$  $\delta \overline{N} = ?$  $\delta N \propto f(\tau)\delta \pi_2 = 0$  $\delta \overline{N} = ?$  $\delta N = 0 = k\delta N$  $\delta \overline{N} = 0 = \delta \overline{N_1}$ • Gauges with anisotropic pert, cannot be generated in the sep, univ,• Synchronous gauge works  $\rightarrow$  Sep. Univ. valid for stochastic formalism

Pattison et al. JCAP, 2019, 1907, 031

### Conditions for using the stochastic formalism:

· Quantum-to-classical transition

Does not assume slow-roll, always a 2-mode squeezed state

#### · Validity of the separate universe

superhubble FLRW patches = cosmological perturbations at superhubble scales -> identify local time and expansion to time and expansion of FLRW patch

#### Gauge-corrections to the noise

Langevin equation in synchronous gauge but noise in other gauges -> Gauge corrections from e.g. spatially-flat to synchronous

Stochastic formalism: Noise in the synchronous gauge
Scalar-field perturbations: spatially-flat gauge

Gauge parameters from S.-F. gauge to the synchronous gauge

 $\begin{array}{l} \mathbf{0} = \left( \delta g_{00}^{\text{synch}} = \delta g_{00} - 2N\dot{N}\xi^{0} - 2N^{2}\dot{\xi}^{0}, \\ \mathbf{0} = \left( \delta g_{0i}^{\text{synch}} = \delta g_{0i} - N^{2}\partial_{i}\xi^{0} + v^{2/3}\delta_{ij}\dot{\xi}^{j} \right) & \text{with} & \delta g_{00} = 2N\,\delta N \\ \delta g_{0i} = v^{2/3}\delta_{ij}\,\delta N^{j} \end{array}$ 

Express lapse and shift in S.-F. as functions of field perturbations  $\delta N^{\rm SF} = \frac{-N\pi_{\phi}}{v\theta} \delta \phi^{\rm SF}$   $k\delta N_1^{\rm SF} = N \left[ \frac{3}{2M_{\rm Pl}^2} \frac{\pi_{\phi}}{v} - \frac{V, \phi}{\theta} \right] \delta \phi^{\rm SF} - \frac{N\pi_{\phi}}{v^2\theta} \delta \pi_{\phi}^{\rm SF}$ 

Gauge transformation of the scalar-field perturbations

$$\delta\phi^{\text{synch}} = \delta\phi^{\text{SF}} + \left\{\delta\phi^{\text{SF}}, \int d^3x\xi^0 \mathcal{S}^{(1)}\right\} + \left\{\delta\phi^{\text{SF}}, \int d^3x\xi^i \mathcal{D}_i^{(1)}\right\} = \delta\phi^{\text{SF}} + \frac{\pi_\phi}{v}\xi^0$$
$$\delta\pi_\phi^{\text{synch}} = \delta\pi_\phi^{\text{SF}} + \left\{\delta\pi_\phi^{\text{SF}}, \int d^3x\xi^0 \mathcal{S}^{(1)}\right\} + \left\{\delta\pi_\phi^{\text{SF}}, \int d^3x\xi^i \mathcal{D}_i^{(1)}\right\} = \delta\pi_\phi^{\text{SF}} - vV_{,\phi}\xi^0 + \pi_\phi\partial_j\xi^2$$

Noise is given in the synchronous gauge:

• Scalar-field perturbations in the synchronous gauge (N=1):  $\delta\phi^{\text{synch}}(k) = \delta\phi^{\text{SF}}(k) - \dot{\phi} \int^{t} dt' \left( \frac{\dot{\phi}}{2M_{\text{Pl}}^{2}H} \right) \delta\phi^{\text{SF}}(k)$   $\delta\pi_{\phi}^{\text{synch}}(k) = \delta\pi_{\phi}^{\text{SF}}(k) + a^{3}V_{,\phi} \int^{t} dt' \left( \frac{\dot{\phi}}{2M_{\text{Pl}}^{2}H} \right) \delta\phi^{\text{SF}}(k)$   $- a^{3}\dot{\phi}k^{2} \int^{t} \frac{dt'}{a^{2}} \left\{ \int^{t'} dt' \left( \frac{\phi}{2M_{\text{Pl}}^{2}H} \right) \delta\phi^{\text{SF}}(k) \right\}$   $+ a^{3}\dot{\phi} \int^{t} \frac{dt'}{2M_{\text{Pl}}^{2}a^{2}} \left[ \left( 3\dot{\phi} + \frac{V_{,\phi}}{H} \right) \delta\phi^{\text{SF}}(k) + \frac{\dot{\phi}}{a^{3}H} \delta\pi_{\phi}^{\text{synch}}(k) \right]$ 

 $\xi_{\phi} \propto \frac{dk_{\sigma}^3}{dt} \delta \phi^{\mathrm{synch}}(k_{\sigma})$ 

 $\xi_{\pi_{\phi}} \propto \frac{dk_{\sigma}^3}{dt} \delta \pi_{\phi}^{\mathrm{synch}}(k_{\sigma})$ 

-> Gauge-corrections are proportional to  $\sqrt{\epsilon_1}$  and  $\epsilon_2$ -> Comparison with Pattison et al. 2019 needs to be done

### NEXC SLEPS

### · Application to U.S.R. and bounce

- -> Gauge-corrections in the momentum direction
- -> Phase-space alignments of the noise
- -> Stochastic anisotropies for « contracton » field

### • Test fields to explore stochastic contraction

- -> Noise alignment in the absence of attractor ?
- -> Non-Bunch-Davies vacuum states ?
- -> Scale of « classicality » vs. horizon scale

### · Role of anisotropic modes; formal aspects

- -> Gauge-fixing in separate universe vs. cosmo. pert.
- -> Is flat FLRW the right separate universe ? Bianchi I to capture the anisotropic modes Close/open FLRW to capture bits on inhomogeneities