Stochastic Inflation: Primordial Black Hole Production and Ultra-Slow Roll

Chris Pattison

Institute of Cosmology and Gravitation, Portsmouth In collaboration with David Wands, Vincent Vennin and Hooshyar Assadullahi

$$
\text { Portsmouth/Paris, 18th May } 2020
$$

Outline

- Inflation
- Characteristic function formalism
- Application to primordial black holes
- Stochastic ultra-slow-roll inflation
- Summary

Inflation

We study single (scalar) field inflation.

Inflation

We study single (scalar) field inflation.
The inflaton ϕ has classical equation of motion

$$
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}(\phi)=0 .
$$

Inflation

We study single (scalar) field inflation.
The inflaton ϕ has classical equation of motion

$$
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}(\phi)=0
$$

Often work in the slow-roll (SR) approximation, which takes

$$
\epsilon_{i+1} \equiv \frac{1}{\epsilon_{i}} \frac{\mathrm{~d} \epsilon_{i}}{\mathrm{~d} N} \ll 1
$$

where $\epsilon_{0}=H_{\text {in }} / H$, and $\mathrm{d} N=H \mathrm{~d} t$ is the number of e-folds.

Inflation

We study single (scalar) field inflation.
The inflaton ϕ has classical equation of motion

$$
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}(\phi)=0 .
$$

Often work in the slow-roll (SR) approximation, which takes

$$
\epsilon_{i+1} \equiv \frac{1}{\epsilon_{i}} \frac{\mathrm{~d} \epsilon_{i}}{\mathrm{~d} N} \ll 1
$$

where $\epsilon_{0}=H_{\text {in }} / H$, and $\mathrm{d} N=H \mathrm{~d} t$ is the number of e-folds.
In this case, the eom simplifies to

$$
\dot{\phi}_{\mathrm{SR}} \simeq-\frac{V^{\prime}(\phi)}{3 H} .
$$

Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ.

Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ.

Then, in SR, ϕ is described by a Langevin equation

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} N}=-\frac{V^{\prime}}{3 H^{2}}+\frac{H}{2 \pi} \xi(N)
$$

where $\langle\xi(N)\rangle=0$ and $\left\langle\xi(N) \xi\left(N^{\prime}\right)\right\rangle=\delta\left(N-N^{\prime}\right), k<a H$ and $N=\int H \mathrm{~d} t$.

Inflaton evolves under Langevin equation until ϕ reaches $\phi_{\text {end }}$ where inflation ends.

- Large density fluctuations during inflation can collapse to form PBHs.

Primordial black holes (PBHs)

- Large density fluctuations during inflation can collapse to form PBHs.
- Such large fluctuations need a non-perturbative approach the δN formalism.

Primordial black holes (PBHs)

- Large density fluctuations during inflation can collapse to form PBHs.
- Such large fluctuations need a non-perturbative approach the δN formalism.
- We use stochastic- δN to study how likely PBHs are to form (Pattison et al, 1707.00537).

Primordial black holes (PBHs)

- Large density fluctuations during inflation can collapse to form PBHs.
- Such large fluctuations need a non-perturbative approach the δN formalism.
- We use stochastic- δN to study how likely PBHs are to form (Pattison et al, 1707.00537).
- Number of PBHs formed is found from integrating the probability distribution of curvature (or density) perturbations

Gaussian Example

Typically assumed ζ has Gaussian distribution.

Gaussian Example

Typically assumed ζ has Gaussian distribution.

Let's not assume this...

Characteristic Function Formalism

Stochastic formalism treats \mathcal{N} as a random variable, so consider its statistical moments.

Characteristic Function Formalism

Stochastic formalism treats \mathcal{N} as a random variable, so consider its statistical moments.

We set $f_{n}(\phi)=\left\langle\mathcal{N}^{n}(\phi)\right\rangle$ and construct the characteristic function $\chi_{\mathcal{N}}(t, \phi)$ as

$$
\begin{aligned}
\chi_{\mathcal{N}}(t, \phi) & =\left\langle e^{i t \mathcal{N}(\phi)}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} f_{n}(\phi) .
\end{aligned}
$$

Characteristic Function Formalism

Stochastic formalism treats \mathcal{N} as a random variable, so consider its statistical moments.

We set $f_{n}(\phi)=\left\langle\mathcal{N}^{n}(\phi)\right\rangle$ and construct the characteristic function $\chi_{\mathcal{N}}(t, \phi)$ as

$$
\begin{aligned}
\chi_{\mathcal{N}}(t, \phi) & =\left\langle e^{i t \mathcal{N}(\phi)}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} f_{n}(\phi) .
\end{aligned}
$$

$\chi_{\mathcal{N}}$ is related to the $\operatorname{PDF} P(\delta \mathcal{N}, \phi)$ by

$$
P(\delta \mathcal{N}, \phi)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t[\delta \mathcal{N}+\langle\mathcal{N}\rangle(\phi)]} \chi_{\mathcal{N}}(t, \phi) \mathrm{d} t
$$

where $\delta \mathcal{N}=\mathcal{N}-\langle\mathcal{N}\rangle=\zeta$ is the curvature perturbation.

We define the dimensionless potential

$$
v(\phi)=\frac{V(\phi)}{24 \pi^{2} M_{\mathrm{Pl}}^{4}} .
$$

We define the dimensionless potential

$$
v(\phi)=\frac{V(\phi)}{24 \pi^{2} M_{\mathrm{Pl}}^{4}} .
$$

We can derive (building on Vennin et al, 1506.04732) a differential equation for $\chi_{\mathcal{N}}$ given by

$$
\left[\frac{\partial^{2}}{\partial \phi^{2}}-\frac{v^{\prime}}{v^{2}} \frac{\partial}{\partial \phi}+\frac{i t}{v M_{\mathrm{Pl}}^{2}}\right] \chi_{\mathcal{N}}(t, \phi)=0 .
$$

We define the dimensionless potential

$$
v(\phi)=\frac{V(\phi)}{24 \pi^{2} M_{\mathrm{Pl}}^{4}} .
$$

We can derive (building on Vennin et al, 1506.04732) a differential equation for $\chi_{\mathcal{N}}$ given by

$$
\left[\frac{\partial^{2}}{\partial \phi^{2}}-\frac{v^{\prime}}{v^{2}} \frac{\partial}{\partial \phi}+\frac{i t}{v M_{\mathrm{PI}}^{2}}\right] \chi_{\mathcal{N}}(t, \phi)=0 .
$$

This means we need to solve a hierarchy of uncoupled differential equations, to be solved at fixed t.

Non-Gaussian Example

As a toy model, let's take the potential

$$
v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2} .
$$

Non-Gaussian Example

As a toy model, let's take the potential

$$
v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2} .
$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t, \phi)$

Non-Gaussian Example

As a toy model, let's take the potential

$$
v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2} .
$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t, \phi)$
- Fourier transform (numerically!) to find the PDF of $\delta \mathcal{N}$, i.e. of the curvature perturbations.

Non-Gaussian Example

As a toy model, let's take the potential

$$
v(\phi)=v_{0}\left(\frac{\phi}{M_{\mathrm{Pl}}}\right)^{2} .
$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t, \phi)$
- Fourier transform (numerically!) to find the PDF of $\delta \mathcal{N}$, i.e. of the curvature perturbations.

We generally do not get a Gaussian solution.

Figure 1: Plot of the PDF of \mathcal{N} against \mathcal{N}.

Application to Primordial Black Holes (PBHs)

If $\zeta>\zeta_{c}$, collapse to form PBHs
The number of PBHs produced is then calculated from the probability distribution $P(\delta \mathcal{N}, \phi)$ of these large perturbations using

$$
\beta[M(\phi)]=2 \int_{\zeta_{\mathrm{c}}}^{\infty} P(\delta \mathcal{N}, \phi) \mathrm{d} \delta \mathcal{N} .
$$

Application to Primordial Black Holes (PBHs)

If $\zeta>\zeta_{c}$, collapse to form PBHs
The number of PBHs produced is then calculated from the probability distribution $P(\delta \mathcal{N}, \phi)$ of these large perturbations using

$$
\beta[M(\phi)]=2 \int_{\zeta_{\mathrm{c}}}^{\infty} P(\delta \mathcal{N}, \phi) \mathrm{d} \delta \mathcal{N} .
$$

This gives the mass fraction of the universe contained in PBHs

Gaussian Example

It is typically assumed ζ has a Gaussian distribution.

Stochastic Limit

Inflationary models that can produce $\zeta>\zeta_{\mathrm{c}}$ are well approximated by a flat potential at the end of inflation, so $v \simeq v_{0}$ and

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} N} \simeq \frac{H}{2 \pi} \xi(N)
$$

For $v=v_{0}$, we can solve for $\chi_{\mathcal{N}}$ exactly, and even perform the inverse Fourier transform analytically.

For $v=v_{0}$, we can solve for $\chi_{\mathcal{N}}$ exactly, and even perform the inverse Fourier transform analytically.

The PDF in this limit is given by

$$
P(\mathcal{N}, \phi)=-\frac{\pi}{2 \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right)
$$

For $v=v_{0}$, we can solve for $\chi_{\mathcal{N}}$ exactly, and even perform the inverse Fourier transform analytically.

The PDF in this limit is given by

$$
P(\mathcal{N}, \phi)=-\frac{\pi}{2 \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right)
$$

where

$$
\mu^{2}=\frac{\Delta \phi_{\mathrm{well}}^{2}}{v_{0} M_{\mathrm{Pl}}^{2}}, \quad x=\frac{\phi-\phi_{\mathrm{end}}}{\Delta \phi_{\mathrm{well}}},
$$

and ϑ_{2} is the second elliptic theta function.

Figure 2: The PDF we obtain for a flat potential.

Mass fraction

For the flat potential, we can find the mass fraction β analytically.

Mass fraction

For the flat potential, we can find the mass fraction β analytically.

The expression we find depends on ϕ, μ and ζ_{c}.

Mass fraction

Figure 3: The mass fraction β is plotted as a function of μ, with $\zeta_{\mathrm{c}}=1$.

We can compare our expression for β (taking $\zeta_{c}=1$) to observations and get constraints on our parameter μ.

We can compare our expression for β (taking $\zeta_{c}=1$) to observations and get constraints on our parameter μ.

For light PBHs $M \sim 10^{9}-10^{16} \mathrm{~g}$ a typical constraint $\beta<10^{-24}$ gives

$$
\mu<0.21
$$

We can compare our expression for β (taking $\zeta_{c}=1$) to observations and get constraints on our parameter μ.

For light PBHs $M \sim 10^{9}-10^{16} \mathrm{~g}$ a typical constraint $\beta<10^{-24}$ gives

$$
\mu<0.21
$$

For heavier PBHs $M \sim 10^{16}-10^{50} \mathrm{~g}$, typically $\beta<10^{-5}$, which gives

$$
\mu<0.47 .
$$

For an arbitrary mass PBH, $\mu<1$ to prevent over-production.

For an arbitrary mass PBH, $\mu<1$ to prevent over-production.

We can write the number of e-folds spent in the quantum well as

$$
\langle\mathcal{N}\rangle=\mu^{2} \frac{\phi}{\Delta \phi_{\text {well }}}\left(1-\frac{\phi}{2 \Delta \phi_{\text {well }}}\right) .
$$

For an arbitrary mass PBH, $\mu<1$ to prevent over-production.

We can write the number of e-folds spent in the quantum well as

$$
\langle\mathcal{N}\rangle=\mu^{2} \frac{\phi}{\Delta \phi_{\text {well }}}\left(1-\frac{\phi}{2 \Delta \phi_{\text {well }}}\right) .
$$

For $\mu<1$, less than one e-fold can be spent in the quantum well.

For an arbitrary mass PBH, $\mu<1$ to prevent over-production.

We can write the number of e-folds spent in the quantum well as

$$
\langle\mathcal{N}\rangle=\mu^{2} \frac{\phi}{\Delta \phi_{\text {well }}}\left(1-\frac{\phi}{2 \Delta \phi_{\text {well }}}\right) .
$$

For $\mu<1$, less than one e-fold can be spent in the quantum well.
Power spectrum is also $\propto \mu^{2}$, so μ determines everything.

Generic Recipe

The "recipe" for analysing a generic potential the following:

- identify the region of your potential that are flat and quantum dominated, and the parts where classical drift dominates;

Generic Recipe

The "recipe" for analysing a generic potential the following:

- identify the region of your potential that are flat and quantum dominated, and the parts where classical drift dominates;
- in the classical regions, make use of the classical constraint $\mathcal{P}_{\zeta} \Delta N<10^{-2} ;$

Generic Recipe

The "recipe" for analysing a generic potential the following:

- identify the region of your potential that are flat and quantum dominated, and the parts where classical drift dominates;
- in the classical regions, make use of the classical constraint $\mathcal{P}_{\zeta} \Delta N<10^{-2} ;$
- in the "quantum wells", check if slow roll is violated. If not make use of our new stochastic constraint $\mu<1(\Delta \mathcal{N}<1)$.

Example: Running Mass Inflation

Running mass inflation (Stewart, 1996) has the potential

$$
v(\phi)=v_{0}\left\{1-\frac{c}{2}\left[-\frac{1}{2}+\ln \left(\frac{\phi}{\phi_{0}}\right)\right] \frac{\phi^{2}}{M_{\mathrm{Pl}}^{2}}\right\} .
$$

Example: Running Mass Inflation

Running mass inflation (Stewart, 1996) has the potential

$$
v(\phi)=v_{0}\left\{1-\frac{c}{2}\left[-\frac{1}{2}+\ln \left(\frac{\phi}{\phi_{0}}\right)\right] \frac{\phi^{2}}{M_{\mathrm{Pl}}^{2}}\right\} .
$$

c is a dimensionless coupling constant, assumed to be $c \ll 1$, and ϕ_{0} must be sub-Planckian, $\phi_{0} \ll M_{\mathrm{Pl}}$.

Begin by identifying the cases where the potential is flat and will be quantum dominated.

Begin by identifying the cases where the potential is flat and will be quantum dominated.

This happens at the end of inflation in $\mathrm{RMI}_{1}, \mathrm{RMI}_{3}$ and RMI_{4}, so calculate μ here.

Begin by identifying the cases where the potential is flat and will be quantum dominated.

This happens at the end of inflation in $\mathrm{RMI}_{1}, \mathrm{RMI}_{3}$ and RMI_{4}, so calculate μ here.

In all three quantum wells, we find

$$
\mu^{2} \propto \frac{1}{|c|} \gg 1
$$

Consequences

In all three cases, we see that in the quantum well we see over-production of PBHs.

Consequences

In all three cases, we see that in the quantum well we see over-production of PBHs.

We constrain the point at which inflation must end, i.e. $\phi_{\text {end }}$ is before we enter the quantum well in each case.

Consequences

In all three cases, we see that in the quantum well we see over-production of PBHs.

We constrain the point at which inflation must end, i.e. $\phi_{\text {end }}$ is before we enter the quantum well in each case.

In both the classical and stochastic regimes, we find

$$
\mathcal{P}_{\zeta} \propto \mu^{2}
$$

and so $\mu \gg 1$ gives a large power spectrum even in the classical regime.

Slow-roll violation

- Many models that produce PBHs also violate slow-roll!
- This means stochastic formalism needs to be extended to include these situations.
- We have checked that stochastic inflation is valid beyond slow roll (Pattison et al, 1905.06300), despite (incorrect) claims in the literature.

If $V^{\prime}=0$, then the slow-roll equation collapses to

$$
\dot{\phi}=0,
$$

so we have no dynamics!

Ultra-slow-roll

If $V^{\prime}=0$, then the slow-roll equation collapses to

$$
\dot{\phi}=0,
$$

so we have no dynamics!
Take the case of $V^{\prime}=0$ in

$$
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}=0 .
$$

This is "ultra-slow-roll" (USR) inflation.
We then find

$$
\dot{\phi}_{\mathrm{USR}}=\dot{\phi}_{\mathrm{in}} e^{-3 H t}
$$

which, unlike slow roll, depends on initial conditions.

Characteristic function in USR

Use the USR system for a flat potential rewritten as

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} N} & =-3 y+\frac{\sqrt{2}}{\mu} \xi(N) \\
\frac{\mathrm{d} y}{\mathrm{~d} N} & =-3 y
\end{aligned}
$$

where

$$
x=\frac{\phi-\phi_{\mathrm{end}}}{\Delta \phi_{\mathrm{well}}}, y=\frac{\dot{\phi}}{\dot{\phi}_{\text {crit }}},
$$

with $\dot{\phi}_{\text {crit }}=-3 H \Delta \phi_{\text {well }}$.

Now, $\mathcal{N}=\mathcal{N}(x, y)$, and characteristic function equation becomes

$$
\left[\frac{1}{\mu^{2}} \frac{\partial^{2}}{\partial x^{2}}-3 y\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)+i t\right] \chi_{\mathcal{N}}(t ; x, y)=0
$$

with initial conditions

$$
\chi_{\mathcal{N}}(t ; 0, y)=1, \frac{\partial \chi_{\mathcal{N}}}{\partial x}(t ; 1, y)=0
$$

Now, $\mathcal{N}=\mathcal{N}(x, y)$, and characteristic function equation becomes

$$
\left[\frac{1}{\mu^{2}} \frac{\partial^{2}}{\partial x^{2}}-3 y\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)+i t\right] \chi_{\mathcal{N}}(t ; x, y)=0
$$

with initial conditions

$$
\chi_{\mathcal{N}}(t ; 0, y)=1, \frac{\partial \chi_{\mathcal{N}}}{\partial x}(t ; 1, y)=0
$$

Lots of current work trying to solve this equation...

Classical limit

Neglecting diffusion:

$$
\left.\chi_{\mathcal{N}}\right|_{\mathrm{cl}}(t ; x, y)=\left(1-\frac{x}{y}\right)^{-\frac{i t}{3}}
$$

Classical limit

Neglecting diffusion:

$$
\left.\chi_{\mathcal{N}}\right|_{\mathrm{cl}}(t ; x, y)=\left(1-\frac{x}{y}\right)^{-\frac{i t}{3}}
$$

Use this to find the number of e-folds:

$$
\begin{aligned}
\langle\mathcal{N}\rangle(x, y) & =-\left.i \frac{\partial \chi_{\mathcal{N}}}{\partial t}\right|_{t=0} \\
& =-\frac{1}{3} \ln \left[1-\frac{x}{y}\right]
\end{aligned}
$$

which matches the known classical limit.
Can expand around this for corrections!

Late-time limit

This is the limit when $y \rightarrow 0$, and then DE for $\chi_{\mathcal{N}}$ becomes

$$
\left[\frac{1}{\mu^{2}} \frac{\partial^{2}}{\partial x^{2}}+i t\right] \chi_{\mathcal{N}}(t ; x)=0
$$

which is exactly the same as stochastic SR limit!
This means we know the solution and PDF in this limit:

$$
P(\mathcal{N}, x(\phi))=-\frac{\pi}{2 \mu^{2}} \vartheta_{2}^{\prime}\left(\frac{\pi}{2} x, e^{-\frac{\pi^{2}}{\mu^{2}} \mathcal{N}}\right)
$$

Small-y limit

Without giving details and long equations, we can do a small- y expansion to calculate $\chi_{\mathcal{N}}$ for small velocity.

Small-y limit

Without giving details and long equations, we can do a small- y expansion to calculate $\chi_{\mathcal{N}}$ for small velocity.

Ongoing work

- We can recast stochastic USR equation to be pure diffusion but with moving barriers. Old system:

$$
\frac{\mathrm{d} x}{\mathrm{~d} N}=-3 y+\frac{\sqrt{2}}{\mu} \xi(N), \quad \frac{\mathrm{d} y}{\mathrm{~d} N}=-3 y
$$

If we take $z=x-y$ then our Langevin system becomes

$$
\frac{\mathrm{d} z}{\mathrm{~d} N}=\frac{\sqrt{2}}{\mu} \xi(N), \quad \frac{\mathrm{d} y}{\mathrm{~d} N}=-3 y
$$

- Then use a new approach of a Volterra equation to calculate PDFs (Zhang and Hui astro-ph/0508384, Buonocore et al 1990ㅜ)
- Provides easy and quick way to get full PDFs without weeks of simulations
${ }^{1}$ https://www.jstor.org/stable/3214598
- The stochastic- $\delta \mathcal{N}$ formalism is needed to analyse curvature perturbations and PBH formation.
- It is sensitive to large-scale quantum kicks, coming from new modes exiting the horizon
- The quantum effects are important for astrophysical objects such as PBHs
- Formalism can be used beyond slow roll, and we are working to use it in USR

Future Work

- Apply our USR formalism more complicated PBH models (eg Garcia-Bellido et al, 2017)
- Calculate PBH abundances and compare to constraints for USR models
- Extend the formalism to include multi-field inflation.

Power spectrum

Written in terms of μ, the power spectrum in the stochastic framework is

$$
\mathcal{P}_{\zeta}=\frac{\mu^{2}}{3}\left(2 x^{2}-4 x+2\right) .
$$

Written in terms of μ, the power spectrum in the stochastic framework is

$$
\mathcal{P}_{\zeta}=\frac{\mu^{2}}{3}\left(2 x^{2}-4 x+2\right) .
$$

Note that both the power spectrum and number of e-folds scale as μ^{2}, so constraining μ is important.

Written in terms of μ, the power spectrum in the stochastic framework is

$$
\mathcal{P}_{\zeta}=\frac{\mu^{2}}{3}\left(2 x^{2}-4 x+2\right) .
$$

Note that both the power spectrum and number of e-folds scale as μ^{2}, so constraining μ is important.

Taking $\beta<10^{22}$, this gives $\mathcal{P}_{\zeta}<1.6 \times 10^{-2}$.

Written in terms of μ, the power spectrum in the stochastic framework is

$$
\mathcal{P}_{\zeta}=\frac{\mu^{2}}{3}\left(2 x^{2}-4 x+2\right) .
$$

Note that both the power spectrum and number of e-folds scale as μ^{2}, so constraining μ is important.

Taking $\beta<10^{22}$, this gives $\mathcal{P}_{\zeta}<1.6 \times 10^{-2}$.
Contrary to the classical condition $\mathcal{P}_{\zeta} \Delta N<10^{-2}$, we don't have the number of e-folds in the stochastic constrain, since μ determines everything.

A larger curvature power spectrum means more PBHs . Classically $\mathcal{P}_{\zeta} \propto v^{3} / v^{\prime 2}$.

A larger curvature power spectrum means more PBHs.
Classically $\mathcal{P}_{\zeta} \propto v^{3} / v^{\prime 2}$.

Figure 4: Power spectra for $v \propto 1+\phi^{2}$ and $v=$ constant.

