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@ Stochastic ultra-slow-roll inflation
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We study single (scalar) field inflation.
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Inflation

We study single (scalar) field inflation.

The inflaton ¢ has classical equation of motion

d+3Hdp+ VY p)=0.
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Inflation

We study single (scalar) field inflation.

The inflaton ¢ has classical equation of motion
b+3Hd+VYp)=0.
Often work in the slow-roll (SR) approximation, which takes

1 déi
€ _
ol €; dN

where €9 = Hiy/H, and dN = Hdt is the number of e-folds.
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Inflation

We study single (scalar) field inflation.

The inflaton ¢ has classical equation of motion
b+3Hd+VYp)=0.
Often work in the slow-roll (SR) approximation, which takes

l déi
€; dN

€i+1

where €9 = Hiy/H, and dN = Hdt is the number of e-folds.
In this case, the eom simplifies to

V'(¢)
3H

dsr 7
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Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum
fluctuations as white noise, £.
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Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum
fluctuations as white noise, £.

Then, in SR, ¢ is described by a Langevin equation

do vl H
— = —_ 4+ —¢(N
dN 3H2+2w5( )

where h¢ (N)i =0 and h¢ (N)E(ND)i=6(N N, k <aH and
N = [ Hdt.
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Inflaton evolves under Langevin equation until ¢ reaches ¢eng
where inflation ends.

N

v

Qbend Qb*

e\\

Chris Pattison (ICG, Portsmouth) christopher.pattison@port.ac.uk



Primordial black holes (PBHs)

@ Large density fluctuations during inflation can collapse to form
PBHs.
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Primordial black holes (PBHs)

@ Large density fluctuations during inflation can collapse to form
PBHs.

@ Such large fluctuations need a non-perturbative approach -
the O N formalism.
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Primordial black holes (PBHs)

@ Large density fluctuations during inflation can collapse to form
PBHs.

@ Such large fluctuations need a non-perturbative approach -
the O N formalism.

@ We use stochastic-d N to study how likely PBHs are to form
(Pattison et al, 1707.00537).
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Primordial black holes (PBHs)

@ Large density fluctuations during inflation can collapse to form
PBHs.

@ Such large fluctuations need a non-perturbative approach -
the O N formalism.

@ We use stochastic-d N to study how likely PBHs are to form
(Pattison et al, 1707.00537).

@ Number of PBHs formed is found from integrating the
probability distribution of curvature (or density) perturbations
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Gaussian Example

Typically assumed ¢ has Gaussian distribution.

9

B = 2/4 P(Q)d¢

c
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Gaussian Example

Typically assumed ¢ has Gaussian distribution.

9

B = 2/{ P(Q)d¢

c

Y Of

Let's not assume this...
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Characteristic Function Formalism

Stochastic formalism treats N as a random variable, so consider its
statistical moments.
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Characteristic Function Formalism

Stochastic formalism treats N as a random variable, so consider its
statistical moments.

We set f,(¢) =hN™(¢)i and construct the characteristic function
XN (t7 (b) as

™

Nt ) = < itN (¢)>

1 ..,
:Z(Zt) fn(¢)

n!

n=0
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Characteristic Function Formalism

Stochastic formalism treats N as a random variable, so consider its
statistical moments.

We set f,(¢) =hN™(¢)i and construct the characteristic function
XN (t7 (b) as

N (8 @) = <€itN (¢)>

1
= e,
n=0

XN is related to the PDF P(6N,¢) b

1
PN.G) =5 [ e INENIOy (1)

where SN =N hNi = ( is the curvature perturbation.
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We define the dimensionless potential

Vi(¢)

V0= aieng
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We define the dimensionless potential

Vi(¢)

Y0 = 55

We can derive (building on Vennin et al, 1506.04732) a differential
equation for xN given by

0? W9 it

942 v28¢+m XN (t,¢) =0.
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We define the dimensionless potential

Vi(¢)

Y0 = 55

We can derive (building on Vennin et al, 1506.04732) a differential
equation for xN given by
0? o' 0 it
Z 4 — | xn(t¢) =0.
202 200 Toaz | N (He)

This means we need to solve a hierarchy of uncoupled differential
equations, to be solved at fixed t.
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As a toy model, let's take the potential

v(¢) = vo (J\Z1>2 :
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Non-Gaussian Example

As a toy model, let's take the potential

v(¢) = vo (]\Zl)Q .

The computational program is then
@ solve our ODE for xn (¢, ¢)
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Non-Gaussian Example

As a toy model, let's take the potential
(2
v(¢) = vo (Mpl .

The computational program is then
@ solve our ODE for xn (¢, ¢)
e Fourier transform (numerically!) to find the PDF of N,
i.e. of the curvature perturbations.
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Non-Gaussian Example

As a toy model, let's take the potential
(2
v(¢) = vo (Mpl .

The computational program is then
@ solve our ODE for xn (¢, ¢)
e Fourier transform (numerically!) to find the PDF of N,
i.e. of the curvature perturbations.

We generally do not get a Gaussian solution.
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Figure 1: Plot of the PDF of N against N.
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Application to Primordial Black Holes (PBHs)

If ¢ > (., collapse to form PBHs

The number of PBHs produced is then calculated from the
probability distribution P(dN, ¢) of these large perturbations using

1
B[M(p)] =2 i P (6N, ¢)doN .
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Application to Primordial Black Holes (PBHs)

If ¢ > (., collapse to form PBHs

The number of PBHs produced is then calculated from the
probability distribution P(dN, ¢) of these large perturbations using

1
SIM (@) =2 [ PN.g)doN

This gives the mass fraction of the universe contained in PBHs
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Gaussian Example

It is typically assumed ¢ has a Gaussian distribution.

M) =2 / HQd¢

Ce

0 C,
¢
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Stochastic Limit

Inflationary models that can produce ¢ > (. are well approximated
by a flat potential at the end of inflation, so v ™ vy and

d¢ , H (N)

dN 27 ’
10—t
1024 Classically dominated
1073 4

Quantum well
104 Q :
10-° } , ; .

Pend Gena + A(:bwcll [}
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For v = vy, we can solve for yN exactly, and even perform the
inverse Fourier transform analytically.
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For v = vy, we can solve for yN exactly, and even perform the
inverse Fourier transform analytically.

The PDF in this limit is given by

P(N.g)= 550 (gx,e ”)

N
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For v = vy, we can solve for yN exactly, and even perform the
inverse Fourier transform analytically.

The PDF in this limit is given by

2
T T N
P(N7¢) = ﬁﬁ% <2(E,€ u? ) )
where )
2 Bl P Pend
vo Mg, Adwenr

and v, is the second elliptic theta function.
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Figure 2: The PDF we obtain for a flat potential.
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For the flat potential, we can find the mass fraction 8 analytically.
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Mass fraction

For the flat potential, we can find the mass fraction 5 analytically.

The expression we find depends on ¢, p and (.
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Mass fraction
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Figure 3: The mass fraction g is plotted as a function of g,
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We can compare our expression for 5 (taking (. = 1) to
observations and get constraints on our parameter p.
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We can compare our expression for 5 (taking (. = 1) to
observations and get constraints on our parameter p.

For light PBHs M 10° 10'%g a typical constraint 3 < 10 24

gives
w<0.21.

Chris Pattison (ICG, Portsmouth) christopher.pattison@port.ac.uk



We can compare our expression for 5 (taking (. = 1) to
observations and get constraints on our parameter p.

For light PBHs M 10° 10'%g a typical constraint 3 < 10 24
gives
w<0.21.

For heavier PBHs M 10'6  10°g, typically 3 < 10 5, which
gives
w<047.
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For an arbitrary mass PBH, i < 1 to prevent over-production.
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e-folds constraint

For an arbitrary mass PBH, i < 1 to prevent over-production.

We can write the number of e-folds spent in the quantum well as

. ¢ ¢
N _M2A¢well <1 2A¢weu> '
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e-folds constraint

For an arbitrary mass PBH, i < 1 to prevent over-production.

We can write the number of e-folds spent in the quantum well as

. ¢ ¢
N _M2A¢well <1 2A¢weu> '

For i1 < 1, less than one e-fold can be spent in the quantum well.
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e-folds constraint

For an arbitrary mass PBH, i < 1 to prevent over-production.

We can write the number of e-folds spent in the quantum well as

. ¢ ¢
N _M2A¢well <1 2A¢weu> '

For i1 < 1, less than one e-fold can be spent in the quantum well.

Power spectrum is also / 2, so y determines everything.
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Generic Recipe

The “recipe” for analysing a generic potential the following:

o identify the region of your potential that are flat and quantum
dominated, and the parts where classical drift dominates;
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Generic Recipe

The “recipe” for analysing a generic potential the following:

o identify the region of your potential that are flat and quantum
dominated, and the parts where classical drift dominates;

@ in the classical regions, make use of the classical constraint
P;AN <10 2
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Generic Recipe

The “recipe” for analysing a generic potential the following:

o identify the region of your potential that are flat and quantum
dominated, and the parts where classical drift dominates;

@ in the classical regions, make use of the classical constraint
P;AN <10 2

@ in the “quantum wells”, check if slow roll is violated. If not
make use of our new stochastic constraint ;1 < 1 (AN < 1).
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Example: Running Mass Inflation

Running mass inflation (Stewart, 1996) has the potential

-l 5[ en(2)]i5)
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Example: Running Mass Inflation

Running mass inflation (Stewart, 1996) has the potential
v(p) =wvp31 el L +In L ¢’
U 20 27 e/l MRS

c is a dimensionless coupling constant, assumed to be ¢ 1, and
¢o must be sub-Planckian, ¢g  Mp,.
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Begin by identifying the cases where the potential is flat and will
be quantum dominated.
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Begin by identifying the cases where the potential is flat and will
be quantum dominated.

This happens at the end of inflation in RMI;, RMI3 and RMly, so
calculate p here.
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Begin by identifying the cases where the potential is flat and will
be quantum dominated.

This happens at the end of inflation in RMI;, RMI3 and RMly, so
calculate p here.

In all three quantum wells, we find
1

2
/ —
: Ia
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Consequences

In all three cases, we see that in the quantum well we see
over-production of PBHs.
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Consequences

In all three cases, we see that in the quantum well we see
over-production of PBHs.

We constrain the point at which inflation must end, i.e. ¢eng is
before we enter the quantum well in each case.
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Consequences

In all three cases, we see that in the quantum well we see
over-production of PBHs.

We constrain the point at which inflation must end, i.e. ¢eng is
before we enter the quantum well in each case.

In both the classical and stochastic regimes, we find
Pe/ 12,

and so 1 gives a large power spectrum even in the classical
regime.
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Slow-roll violation

@ Many models that produce PBHs also violate slow-roll!

@ This means stochastic formalism needs to be extended to
include these situations.

@ We have checked that stochastic inflation is valid beyond slow
roll (Pattison et al, 1905.06300), despite (incorrect) claims in
the literature.

O
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Ultra-slow-roll

If V! =0, then the slow-roll equation collapses to

¢=0,

so we have no dynamics!
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Ultra-slow-roll

If V! =0, then the slow-roll equation collapses to

¢=0,

so we have no dynamics!
Take the case of V! =0 in

¢+3Hp+V'=0.
This is “ultra-slow-roll” (USR) inflation.
We then find

dusr = dme *",

which, unlike slow roll, depends on initial conditions.
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Characteristic function in USR

Use the USR system for a flat potential rewritten as

P—
dx 2
— = 3 —&(N
N Y+ . §(N)
dy
FRA
where
_¢ (bend o ¢

xr = 7y - I
AQZ)well ¢crit

With ¢t =  3HAbyel
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Now, N = N (z,y), and characteristic function equation becomes

ia—Q 3 9 + 9 + it (t;x,y) =0
Nz 8:1:2 y 85[? ay XN 9 73/ - )
with initial conditions

IXN
t;0 =1,—(t;1 =0.
XN() ’y) 3 Ox (a 7y)
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Now, N = N (z,y), and characteristic function equation becomes

1 02 o 0 _
?W 3y 8784_87; +it| xn (L2, y) =0,

with initial conditions

)
X (50,y) = 1, AN

t;1,y) =0.
8.%' I 7y)

Lots of current work trying to solve this equation...
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Classical limit

Neglecting diffusion:

T 3
led(t;m,y)=(1 —> :
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Classical limit

Neglecting diffusion:

T 3
XN\Cl(t;fv,y)=<1 y) :

Use this to find the number of e-folds:

- . 8XN
hN = 4§ ==
i(z,y)= i ot |
= 1ln [1 x]’
3 Yy

which matches the known classical limit.
Can expand around this for corrections!
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Late-time limit

This is the limit when y ¥ 0, and then DE for yn becomes

1 02
[ e 2—|—zt}x|\|(t x)=0,

which is exactly the same as stochastic SR limit!
This means we know the solution and PDF in this limit:

P(N,z(¢)) = 27;2190 (;r e 2“)
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Small-y limit

Without giving details and long equations, we can do a small-y
expansion to calculate yn for small velocity.
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Small-y limit

Without giving details and long equations, we can do a small-y
expansion to calculate yn for small velocity.
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Ongoing work

@ We can recast stochastic USR equation to be pure diffusion
but with moving barriers. Old system:

dx p? d7y

el _ &N —

dN
If we take z =z gy then our Langevin system becomes

dz p? g

v =W gy =

@ Then use a new approach of a Volterra equation to calculate
PDFs (Zhang and Hui astro-ph/0508384, Buonocore et al
1990%)

@ Provides easy and quick way to get full PDFs without weeks
of simulations

https:/ /www.jstor.org/stable /3214598
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Summary

@ The stochastic-6N formalism is needed to analyse curvature
perturbations and PBH formation.

@ It is sensitive to large-scale quantum kicks, coming from new
modes exiting the horizon

@ The quantum effects are important for astrophysical objects
such as PBHs

@ Formalism can be used beyond slow roll, and we are working
to use it in USR
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Future Work

@ Apply our USR formalism more complicated PBH models (eg
Garcia-Bellido et al, 2017)

@ Calculate PBH abundances and compare to constraints for
USR models

@ Extend the formalism to include multi-field inflation.
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Power spectrum

Written in terms of u, the power spectrum in the stochastic
framework is

2
sz%(m@ 4z +2) .
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Power spectrum

Written in terms of u, the power spectrum in the stochastic
framework is

2
Pcz%(2x2 4z +2) .

Note that both the power spectrum and number of e-folds scale as

12, so constraining p is important.
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Power spectrum

Written in terms of u, the power spectrum in the stochastic
framework is

2
Pcz%(2x2 4z +2) .

Note that both the power spectrum and number of e-folds scale as

12, so constraining p is important.

Taking 8 < 10?2, this gives P, <1.6 10 2,
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Power spectrum

Written in terms of u, the power spectrum in the stochastic
framework is

2
sz%(zﬁ 4z +2) .

Note that both the power spectrum and number of e-folds scale as

12, so constraining p is important.

Taking 8 < 10?2, this gives P, <1.6 10 2,

Contrary to the classical condition PCAN < 10 2, we don't have
the number of e-folds in the stochastic constrain, since p
determines everything.
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A larger curvature power spectrum means more PBHs.
Classically P; / v /0%
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A larger curvature power spectrum means more PBHs.
Classically P; / v /0%
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Figure 4: Power spectra for v Z 1 + ¢? and v = constant.
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