Interplay between astrophysical and laboratory probes of MeV-scale ALPs

Fatih Ertas

in collaboration with:

Felix Kahlhoefer - arXiv: 2004.01193

May 11th, 2020

Outline

- Motivation
- Theoretical Framework
- Experimental and Observational Constraints
- Results

Motivation

- Extensions of the SM? Heavy new particles!
- Despite all experimental efforts so far, no (conclusive) evidence for heavy particles at TeV scale
- Maybe missed some physics along the way?
 - \rightarrow renewed attention for new, much lighter particles
 - \rightarrow remain to be discovered, if they have small interactions
- Popular candidate: Axion-like particle

Goldstone bosons

- Theoretical motivation: Goldstone's theorem
- Spontaneous breaking of an (approximate) global symmetry gives rise to (Pseudo-)Goldstone bosons
 - naturally light (or even massless)
 - interactions are suppressed by scale of symmetry breaking
 - \rightarrow common explanation for small mass and tiny interactions
- Example: $U(1)_{PQ}$ symmetry $\leftrightarrow \downarrow QCD$ axion

Axion-like particles

- Unlike QCD axion employ model-independent approach
 - Couplings are free parameters
 - Treat mass as an independent parameter
 - \Rightarrow Axion-like particles (ALPs)

Axion-like particles

- Unlike QCD axion employ model-independent approach
 - Couplings are free parameters
 - Treat mass as an independent parameter
 - \Rightarrow Axion-like particles (ALPs)
- ALP couplings therefore include in general
 - SM fermions Gluons
 - SM Higgs

- Electroweak gauge bosons

General ALP EFT

• Write down general EFT

[H. Georgi et al., Phys.Lett. 169B (1986), M. Bauer et al., arXiv: 1708.00443]

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\Psi}_{F} C_{F} \gamma_{\mu} \Psi_{F}$$
$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{a} \tilde{W}^{\mu\nu,a} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- Ψ_F : chiral fermion fields
- $X^a_{\mu\nu}$: $SU(3)_C$, $SU(2)_L$ and $U(1)_Y$ field strength tensors

General ALP EFT

• Write down general EFT

[H. Georgi et al., Phys.Lett. 169B (1986), M. Bauer et al., arXiv: 1708.00443]

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\Psi}_{F} C_{F} \gamma_{\mu} \Psi_{F}$$
$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{a} \tilde{W}^{\mu\nu,a} + g^{\prime 2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- Ψ_F : chiral fermion fields
- $X^{a}_{\mu\nu}$: $SU(3)_{C}$, $SU(2)_{L}$ and $U(1)_{Y}$ field strength tensors

Relations between couplings

- EWSB generates couplings to *W* bosons, photons etc.
 - W boson $\leftrightarrow C_{WW}$
 - Photon coupling $C_{\gamma\gamma} = C_{WW} + C_{BB}$

•
$$Z\gamma a$$
 coupling $C_{\gamma Z} = c_W^2 C_{WW} - s_W^2 C_{BB}$

• But also gluonic contribution ($m_a \lesssim \Lambda_{\rm QCD}$)

•
$$C_{\gamma\gamma}^{\text{eff}} pprox C_{WW} + C_{BB} - 1.92C_{GG} - rac{1}{3}rac{m_a^2}{m_\pi^2 - m_a^2}C_{GG}$$

[M. Bauer et al., arXiv: 1708.00443]

 \Rightarrow Strong correlation between interactions

1

Laboratory probes

- Which experiments do we consider?
 - Fixed-target experiments:

- L3 at LEP performed search for $Z \rightarrow \gamma + \text{inv.}$ at Z resonance

Experimental and Observational Constraints

- Rare Meson decays:
 - Experimental constraints by E787/E949 on $K^+ \rightarrow \pi^+ a$

Ensure invisible decay in experiment

$${\sf BR}({\cal K}^+ o\pi^+a)^{\sf exp}={\sf BR}({\cal K}^+ o\pi^+a)^{\sf theo}~e^{-L_{\sf det}/L_{\sf alp}}$$

Experimental and Observational Constraints

- Rare Meson decays:
 - Experimental constraints by E787/E949 on $K^+ \rightarrow \pi^+ a$
 - NA62 focusses on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ \rightarrow Assume improvement on bound by an order of magnitude [R. Fantechi et al., arXiv: 1407.8213]

[S. Adler et al., E787, arXiv: 0403034]

• Ensure invisible decay in experiment

$$\mathsf{BR}(\mathsf{K}^+ o \pi^+ a)^{\mathsf{exp}} = \mathsf{BR}(\mathsf{K}^+ o \pi^+ a)^{\mathsf{theo}} e^{-L_{\mathsf{det}}/L_{\mathsf{alp}}}$$

Experimental and Observational Constraints

- Rare Meson decays:
 - Experimental constraints by E787/E949 on $K^+ \rightarrow \pi^+ a$
 - NA62 focusses on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ \rightarrow Assume improvement on bound by an order of magnitude [R. Fantechi et al., arXiv: 1407.8213]

• Ensure invisible decay in experiment

$${\sf BR}({\cal K}^+ o\pi^+{\it a})^{\sf exp}={\sf BR}({\cal K}^+ o\pi^+{\it a})^{\sf theo}\,e^{-L_{\sf det}/L_{\sf alp}}$$

Experimental and Observational Constraints

- Electron beam dump (E137) strongest fixed-target bound
- HB star dominant for $m_a \lesssim 10 \ keV$
- SN 1987A ("cooling" bound)
 - Formation of proto-neutron star
 - Most of energy liberated by neutrino emission

[M. Dolan et al., arXiv: 1709.00009]

Experimental and Observational Constraints

- SN bound rather simplistic
 - No temperature and density profiles
 - No radius and energy dependence of ALP trapping
 - \rightarrow improve calculation
 - ightarrow consistent approach: $C_{\gamma\gamma}$ & C_{GG}

[[]M. Dolan et al., arXiv: 1709.00009]

• Below cooling bound: missing ALP burst

SN Bound

- Apply Raffelt criterion for SN bound: $L_{ALP} > L_{\nu}$
- ALP Luminosity reads schematically

[J.H. Chang et al., arXiv: 1611.03864]

$$L_{
m ALP} \sim \int_{r \leq R_{
u}} dV \, Q \, e^{- au}$$

with Q as volume emission rate and optical depth $\boldsymbol{\tau}$

$$Q \sim \int rac{d^3 k_a}{(2\pi)^3} \, E_a \, \Gamma_{
m prod} \,, \qquad au \sim \int_r^{R_{
m far}} dr' \, \Gamma_{
m abs}$$

ALP Luminosity Formula

• Luminosity formula is given by $(E_a \equiv \omega)$

$$L_{ALP} = \int_{r \le R_{\nu}} dV \left(\int \frac{d^{3} \mathbf{p}_{a}}{(2\pi)^{3}} \omega \Gamma_{a} e^{-\omega/T} \beta e^{-\tau} + \int \frac{2d^{3} \mathbf{p}_{\gamma}}{(2\pi)^{3}} \frac{\omega \Gamma_{\gamma \to a}}{e^{\omega/T} - 1} \beta e^{-\tau} \right)$$

Nucleon-Scattering:
$$N + N \to N + N + a$$

$$\gamma + p \to a + p$$

with
$$eta=\sqrt{1-m_{a}^{2}/\omega^{2}}$$

ALP Luminosity Formula

• Luminosity formula is given by $(E_a \equiv \omega)$

$$L_{ALP} = \int_{r \leq R_{\nu}} dV \left(\int \frac{d^{3}\mathbf{p}_{a}}{(2\pi)^{3}} \omega \Gamma_{a} e^{-\omega/T} \beta e^{-\tau} + \int \frac{2d^{3}\mathbf{p}_{\gamma}}{(2\pi)^{3}} \frac{\omega \Gamma_{\gamma \to a}}{e^{\omega/T} - 1} \beta e^{-\tau} \right)$$

Nucleon-Scattering:
$$N + N \to N + N + a$$

$$\gamma + p \to a + p$$

with $eta=\sqrt{1-m_{a}^{2}/\omega^{2}}$ and the optical depth au reading

$$\tau = \beta^{-1} \int_{\mathbf{r}}^{\mathbf{R}_{\mathsf{far}}} d\mathbf{r}' \left(2\Gamma_{\gamma \to \mathbf{a}} + \gamma^{-1}\Gamma_{\mathbf{a}\gamma\gamma} + \Gamma_{\mathbf{a}} \right)$$

Comparison of SN bounds

Photon coupling

Reminder about couplings

• Lagrangian before EWSB

$$\mathcal{L}_{\text{eff}} = g_s^2 C_{GG} \frac{a}{\Lambda} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + g^2 C_{WW} \frac{a}{\Lambda} W^a_{\mu\nu} \tilde{W}^{\mu\nu,a} + g'^2 C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

- After EWSB
 - W boson $\leftrightarrow C_{WW}$

•
$$C_{\gamma\gamma}^{\mathrm{eff}} \approx C_{WW} + C_{BB} - 1.92C_{GG} - \frac{1}{3} \frac{m_a^2}{m_\pi^2 - m_a^2} C_{GG}$$

•
$$Z\gamma a$$
 coupling $C_{\gamma Z} = c_W^2 C_{WW} - s_W^2 C_{BB}$

Couplings to electroweak gauge bosons only

• Consider sizeable C_{WW}

Couplings to electroweak gauge bosons only

- Consider sizeable C_{WW}
- Have $C_{\gamma\gamma}^{\text{eff}} \approx C_{WW}$ $\rightarrow \text{BR}(a \rightarrow \gamma\gamma) \approx 1$
- How to open up more parameter space?
- Reminder: $C_{\gamma\gamma} = C_{WW} + C_{BB}$

Couplings to electroweak gauge bosons only

- Consider $C_{BB} = 10C_{WW}$
- $C_{\gamma\gamma} = C_{WW} + C_{BB}$
 - ightarrow Shifts bounds dependent on $C_{\gamma\gamma}$
 - \rightarrow In particular SN bounds are shifted downwards
- Further Options?

Couplings to gluons

- Turn on sizeable gluon coupling [G. Alonso-Alvarez et al., arXiv: 1811.05466]
- Contributes to photon coupling

$$C_{\gamma\gamma}^{ ext{eff}} pprox -1.92 C_{GG} - rac{1}{3} rac{m_{a}^2}{m_{\pi}^2 - m_{a}^2} C_{GG}$$

•
$$K^+ \rightarrow \pi^+ a$$
 via π^0 , η , η' mixing [D.S.M. Alves and N. Weiner, arXiv: 1710.03764]

 \rightarrow How to circumvent the uncertainties?

Couplings to all Standard Model gauge bosons

• $C_{GG} = C_{WW}$

• $K^+ \rightarrow \pi^+ a$ via C_{WW}

Couplings to all Standard Model gauge bosons

• $C_{GG} = C_{WW}$

• $K^+ \rightarrow \pi^+ a$ via C_{WW}

•
$$C_{GG} = C_{WW} = C_{BE}$$

• Cancellation: $C_{\gamma\gamma}^{\rm eff} \approx 0.08 C_{GG}$

Couplings to all Standard Model gauge bosons

• $C_{GG} = C_{WW}$

• $K^+ \rightarrow \pi^+ a$ via C_{WW}

•
$$C_{GG} = C_{WW} = C_{BB}$$

• Cancellation: $C_{\gamma\gamma}^{\rm eff} \approx 0.08 C_{GG}$

- $C_{GG} = 0.1 C_{WW}$
- Lab-Experiment reaches region of SN1987A

Conclusion

• Studied MeV-scale ALPs in EFT framework

ightarrow Particular focus on ${\cal K}^+
ightarrow \pi^+ a$

• Consistent approach to calculation of SN cooling bound \rightarrow Bound on $C_{\gamma\gamma}$ more conservative, while on C_{GG} in agreement with literature

Conclusion

• Studied MeV-scale ALPs in EFT framework

ightarrow Particular focus on ${\cal K}^+
ightarrow \pi^+ a$

• Consistent approach to calculation of SN cooling bound

 \rightarrow Bound on ${\cal C}_{\gamma\gamma}$ more conservative, while on ${\cal C}_{GG}$ in agreement with literature

• Overall ALP phenomenology depends on the couplings that are generated

 \rightarrow Improved this approach by including all relevant operators

Thank you for your attention!

Questions?

Backup

Photophobic ALP

- Set $C_{WW} = -C_{BB}$ $\rightarrow C_{\gamma\gamma}|_{tree} = 0$
 - \rightarrow "photophobic ALP"
 - \rightarrow nearly no parameter space open
- Note $1/f_a \sim C_{WW}$

[N. Craig et al., arXiv: 1805.06538]

Octet Enhancement

• Hierarchy encountered in Kaon decays

$$\Rightarrow \Gamma(K^0 \to \pi^+\pi^-), \ \Gamma(K^0 \to \pi^0\pi^0) \gg \Gamma(K^+ \to \pi^+\pi^0)$$

- The very same operators in ChPT lead to an enhanced mixing contribution of η and η'

$$\begin{split} i\mathcal{M}(K^+ \to \pi^+ a) &\approx \theta_{a\pi} \, i\mathcal{M}(K^+ \to \pi^+ \pi^0) \\ &+ \theta_{a\eta} \, i\mathcal{M}(K^+ \to \pi^+ \eta) + \theta_{a\eta'} \, i\mathcal{M}(K^+ \to \pi^+ \eta') \end{split}$$

[Bardeen et al., Nucl. Phys. B279 (1987)]

Mixing angles

• The mixing effects can be written as

$$\begin{aligned} \pi^{0} &\to \pi^{0} + \theta_{a\pi} a \approx \pi^{0} + \epsilon \frac{K_{a\pi} m_{a}^{2}}{m_{a}^{2} - m_{\pi}^{2}} a \\ \eta &\to \eta + \theta_{a\eta} a \approx \eta + \epsilon \frac{K_{a\eta} m_{a}^{2} + m_{a\eta}^{2}}{m_{a}^{2} - m_{\eta}^{2}} a \\ \eta' &\to \eta' + \theta_{a\eta'} a \approx \eta' + \epsilon \frac{K_{a\eta'} m_{a}^{2} + m_{a\eta'}^{2}}{m_{a}^{2} - m_{\eta'}^{2}} a \end{aligned}$$

[D. Aloni et al., arXiv: 1811.03474]

General Formula for Volume Emission Rate

• The energy loss rate Q (energy per volume and unit time) is defined by

$$Q = \int \frac{\mathrm{d}^{3}\mathbf{p}_{a}}{2\omega_{a}(2\pi)^{3}} \omega_{a} \left(\prod_{i} \int \frac{\mathrm{d}^{3}\mathbf{p}_{i}}{2\omega_{i}(2\pi)^{3}} f_{i}(\omega_{i})\right) \left(\prod_{f} \int \frac{\mathrm{d}^{3}\mathbf{p}_{f}}{2\omega_{f}(2\pi)^{3}} [1 \pm f_{f}(\omega_{f})]\right)$$
$$\times S \sum_{\mathrm{spins/pol.}} |M|^{2} (2\pi)^{4} \delta^{(4)} \left(\sum_{i} p_{i}^{\mu} - \sum_{f} p_{f}^{\mu} - p_{a}^{\mu}\right)$$

[G. Raffelt, Phys. Rept. 198 (1990)]

General Formula for Optical Depth

• The optical depth is given by

$$\tau = \beta^{-1} \int \mathrm{d} r \, \Gamma_{\mathsf{abs}} \,,$$

[G. Raffelt, Phys. Rept. 198 (1990)]

where the absorption rate reads

$$\begin{split} \Gamma_{\text{abs}} = & \frac{1}{2\omega_a} \left(\prod_i \int \frac{\mathrm{d}^3 \mathbf{p}_i}{2\omega_i (2\pi)^3} f_i(\omega_i) \right) \left(\prod_f \int \frac{\mathrm{d}^3 \mathbf{p}_f}{2\omega_f (2\pi)^3} [1 \pm f_f(\omega_f)] \right) \\ & \times S \sum_{\text{spins/pol.}} |M|^2 (2\pi)^4 \, \delta^{(4)} \Big(\sum_i p_i^\mu - \sum_f p_f^\mu - p_a^\mu \Big) \end{split}$$

[H. Weldon, Phys. Rev. D28 (1983)]

Primakoff and Bremsstrahlung processes

Bremsstrahlung (OPE)

ALP Luminosity Distribution

What are typical energies for ALPs produced in SN core?

NA62: Signal Region 2 (1/2)

NA62: Signal Region 2 (2/2)

