Machine Learning applications at IN2P3

ANF Machine Learning - 21-25 Septembre 2020, Orsay

Julien Donini LPC / Université Clermont Auvergne

Introduction

ML has been present since a long time in many research fields of the **IN2P3** Since a few years **small revolution** with **modern** ML librairies and infrastructure Access to ML more 'democratic' and widespread than before

A lot of work in this field: here just a few hand-picked results

To have a more **complete overview** of ML activities in the past year

- Prospectives Machine Learning de l'IN2P3 (oct. 2019)
- Journées Machine Learning et Physique Nucléaire (oct. 2019)
- IN2P3/IRFU Machine Learning workshop (jan. 2020)

Outline

Overview of ML activities @ IN2P3

- Detector / accelerator
- ML for HEP analyses
- Nuclear physics
- Astrophysics

Training and schools

Conclusion

Detectors / accelerators

Detector design

ML for Accelerator developments

• ML for ThomX experiment

Simulation

• Simulation of ATLAS calorimeter with GAN's

Fast simulation for High-Lumi LHC

Dominated by : calorimeter simulation and tracking

ML used to design fast simulation algorithms

GAN for simulation for ATLAS

Simulation of liquid-argon electromagnetic calorimeter response with GAN's

Particle goes through 4 layers :

- 0. Pre-Sampler : (7x3) Some energy deposit
- 1. Strips: (56x3) Very granular in η ; more energy deposit
- 2. Middle: (7x7) Thickest layer, maximum energy deposit
- 3. Back: (4x7) Little Energy deposits

First results (2018)

D. Rousseau, A. Ghosh (LAL), G. Louppe (U Liège) et al.

ATL-SOFT-PUB-2018-001 and update ATLAS-SIM-2019-004

Slide taken from Aishik Ghosh talk 01/20

First results (2018)

ATL-SOFT-PUB-2018-001 and update ATLAS-SIM-2019-004

- < 1 ms instead of ~10 s to reconstruct an object
- x100 gain for a full event
- But some limitations: energy resolution, etc

First results (2018)

Problem: cannot model well detector resolution

Improvements

New GAN architecture + conditioning (energy, position, geometry)

 \rightarrow improved energy resolution, particle position

Impressive progresses but probably still a long road to go

(More details here)

Machine learning for accelerators

OWLE: The **O**ne **W**orld particLe accElerator colloquium and seminars

General trend in ML for accelerators

Recently people from **PSI** (SLAC, DESY,CERN, MIT) started series of online seminars for physics of accelerators, and in particular **ML for accelerators**.

The **OWLE-Colloquium** is aimed at giving researchers a platform to share research and development results of very broad interest.

The **OWLE-ML seminar series** has a topical focus on machine learning and **experimental demonstration of AI-ML**.

https://sites.google.com/view/owle/home

Machine learning for accelerators

The ThomX project: high intensity and energy X-ray source produced by compton interaction of photons (laser) and electron (accelerator ring)

Supervised learning for accelerators

H. Guler, V. Kubytskyi et al. (IJCLAB)

ThomX RING : Single particle Trajectory (several turns)

- 1. Control parameter: Corrector magnets. <u>12 independent variables</u> in transverse horizontal/vertical planes.
- 2. Measured: trajectory/n-turns/orbit represented by 120 variables (12 BMPs x 10 Turns).

Model trained on simulation to predict correctors based on the trajectory input. XGBRegressor + MultiOutputRegressor, or NN

ThomX LINAC : Reproduce beam longitudinal dynamics from simulation

- 1. Control parameter: Solenoid, RF phases, laser parameters (10 parameters)
- 2. Measured beam parameters (size, emittance, ...) : 6 observables
- 3. Retrieve parameters from beam profile (CNN)

- Model trained on simulation (slow simulation 10 min per configuration)
- Neuronal network model for scalar data
- CNN for images data

Unsupervised and reinforcement learning

Classification of trajectories with K-Means.

Same dataset is easily regrouped to few categories/classes.

3 categories

10 categories

Reinforcement Learning using model based on NN Find special beam characteristics (example : minimum size, emittance etc)

OpenAl Gym environment used together with **Stable Baseline** and Tensorflow.

Different models benchmarked (DQN, DDQN, **TD3**, ...) with proper policy.

Could find beam minimum size after less than 20 epocs

Machine learning for accelerators

Typical workflow

- 1. Formulation of the problem
- 2. Preparing dataset and "understanding of the data"
- 3. ML model: development, training, improvement

- prediction of correctors magnets currents
- Trajectory minimization
- Noise "filtering" in the data
- Model robustness
- Beta function reconstruction from TBT data
- Optimization of injection
- Orbit classification
- Failure/anomaly detection
- Inverse problems

When NN is not learning, search why :

- Dataset, more datapoints in trajectory
- NN architecture: layers, depth, activation
- learning rate

Output Layer

- Normalisation
- Optimizer

Hidden Laver

Input Laver

Add noise

Methods:

NN, CNN, XGBoost RL

Tools:

Jupyter notebook, Keras, Tensorflow, PyTorch, OpenAI

Hardware:

CPU (x48), GPU(GV100, Laptop)

ML for HEP analyses

ML for HEP analyses

Historically a vast playground for ML approaches – many IN2P3 contributions

Object reconstruction, particle identification, calibration

Event classification, regression

Phenomenology and theory

Real time analysis and triggering

Treatment of uncertainties

Data reduction

Search for anomalies

Searches for new physics at LHC

Fundamental parameter inference

• Likelihood free inference

Anomaly detection

Supervised (labels) DNN, BDT, SVM

Unsupervised (no labels) SVM-1class, AE, VAE, WAE, GAN-AE,...

Semi-supervised (some labels) triplet NN,...

Searches for New Physics at LHC

B. Nachman, D. Shih, arxiv:2001.04990

LHC Olympics challenge

Anomaly detection challenge using simulated data

Despite an impressive and extensive effort by the LHC collaborations, there is currently no convincing evidence for new particles produced in high-energy collisions. Goal is to ensure that the LHC search program is sufficiently well-rounded to capture "all" rare and complex signals.

Two editions in 2020 (Winter and Summer): https://lhco2020.github.io/homepage/

Event-level anomaly detection methods

L. Vaslin, I. Dinu, J. Donini (LPC Clermont)

1. Normalizing flow for anomaly detection

Determine bijective transformations between background data and multivariate Gaussian

background events

Reconstructed

events

D

2. Autoencoders and generative models

Increase performances of AE using a GANlike architecture

3. pyBumpHunter project

Python implementation of the popular BumpHunter algorithm

Code here: pyBumpHunter

Implementation in scikit-hep

AE

Evolution

For details see J. Brehmer slides

Impossible to calculate integral over enormous space

 \rightarrow analysis at LHC generally rely on other approches (collect data in form of histograms, etc)

Approach: use more informative targets to regress for a neural network

Full example using this approach : Measuring Quantum Interference in the Off-shell Higgs to 4 Leptons (see A. Ghosh presentation)

Aim: directly learn the likelihood using ML – results seem promizing

Nuclear physics

O. Stezowski et al. (IP2I)

Data from an experiment AGATA + NEDA + DIAMANT in coincidence [GANIL 2018]

(Slides O. Stezowski)

Data from an experiment AGATA + NEDA + DIAMANT in coincidence [GANIL 2018]

Inputs used for the **Discrimination :** the waveform - the amplitude - the time of flight

Common parametrisation of the signal $s(t) = \mathbf{A} [\exp(-t/t\mathbf{d1}) - \exp(-t/t\mathbf{r}) + \mathbf{R}^*(\exp(-t/t\mathbf{d2}) - \exp(-t/t\mathbf{r})] \text{ if } t > \mathbf{T0}$ A amplitude = energy $t\mathbf{d1}, t\mathbf{d2}, t\mathbf{r}$ independent of γ and \mathbf{n} R depends of the type of the particle

Three different Artificial Neural Network architectures tested : MLP / LSTM / CNN

Convolutional part Convolutional part MLP part MaxPool CNNN

R&D NEDA

discrimination for low energy better that classical methods * Implementation with ROOT - mono thread / CPU

→ Tensorflow / multi CPU / GPU

* Ronchi et al., NIMA 610 (2009) 534-539

Outpu

50

Number of parameters MLP: 814, LSTM: 10502, CNN: 7042

Distribution of the output value of the three different networks neutrons γ-rays -LSTM Counts 10⁶ -MLP CNN Resolutions 10⁵ are different 104 LSTM best one? 10³ What is in between? Is the classification good ? 10² Is a neutron really a neutron? 10 100] 20 30 10 40 50 Normalized Neural Network Output Value

First steps in using Machine Learning for data processing, 3 ANN architectures studied

Signal and autoencoders

Auto encoders into the game for compression / de-noising

Astrophysics

Astrophysics

Deep Learning

- Image analysis:
 - Characterization of gamma-ray events in CTA LAPP
 - Photometry of blended galaxies with deep learning APC
 - Photometric redshift estimation CPPM
 - Identification of tumors through real time imaging IMNC
- Events analysis:
 - Single detector glitches and signal identification in VIRGO APC
 - Waveform reconstruction and characterization in LISA- APC
 - Classification of time-series from astronomical transients LPC, CPPM
- Signal separation:
 - Generate pure EE/BB power spectra from CMB APC
 - Deblending of galaxies with VAEs APC
 - Galaxy signal / noise separation CPPM

For a complete review see talk E. Ishida (journées prospectives IN2P3): here

Training and schools

Collaborations with CS/maths

ML collaborations @ IN2P3

- Common project, co-supervision of PhD, post-doc
- Example of (past) local collaborations :
 - LPC and LIMOS/ISIMA (CS), LMBP (maths)
 - LSST (astronomical time series), ATLAS (anomaly detection), LHCb (bayesian learning)
 - LPNHE and Sorbonne (maths): ATLAS (fuzzy number systems)
 - LAL and LRI (CS): ATLAS (TrackML, Syst. Aware Training)
 - CPPM and LIS (CS): ATLAS (ttH), Cosmology (deep learning)
 - LAPP and LISTIC (CS): CTA (deep learning)
 - ...
- International collaborations: EU-projects with non-academics partners, ...

Obvious advantage in collaborating with ML experts but some caveats:

- Speaking same language & getting familiar with vast stat litterature
- Question of access to confidential experimental data and authorship
- Publication in journal of CS/math field
- Produce outcome relevant to collaborator

Training and schools

Being able to apply ML to practical problems requires understanding underlying statistical concepts and ML algorithms.

• **Target**: students (Master, PhD), staff IN2P3

Training courses exist in several universities / labs

- In general Master degree level some also open to staff for continuous training
 - Ex: Diplome Universitaire Data Scientist
- Training CNRS formation entreprise
 - Ex: Introduction to ML and Deep learning

Schools / workshops

- IN2P3 School of Statistics (organized every 2 years since 2008)
- Workshop CCIN2P3: GPU and deep learning

Uncovered needs should trigger specific training actions

Diplôme Universitaire Data Scientist (UCA)

Formation de l'Université Clermont Auvergne – partenariat CCIN2P3 8 semaines de cours réparties sur l'année Ouvert à la formation continue

Toutes les informations disponibles sur le site de la formation

Conclusions

Usage of "traditional" **ML** since many years within IN2P3

Many resarch field at IN2P3 moved to **modern** ML approaches

Fast growing **expertise** on ML at IN2P3 but **training** is important

Huge research potential and many **opportunities**

Continuity and **support** is essential to maintain activities

Challenge: scalability, optimization, integration to experimental software

BACKUP

1. Detectors & accelerators

2. Simulation

Detector design

Use ML to optimize detector design (LPNHE)

ML for Accelerator developments

- Accelerator tuning, lasers, virtual detectors (LAL)
- NN for particle accelerator operations and optimization (LPSC)

Simulation

- Simulation of ATLAS calorimeter with GAN's (LAL)
- MC sample reweighting in ATLAS (LPNHE)
- NN to simulate **fuel evolution** in nuclear reactors (IPNO)
- BDT's for multidim reweighting between MC (LAL)
- Gaussian Processes to **smooth MC** stat fluctuations (LAL)

Color code

3. Object Reconstruction, Identification, and Calibration

Several contributions:

- Tracking ML challenge for LHC (LAL)
- **b-tagging** algorithms with BDT's for ATLAS (CPPM)
- Particle identification for LHCb (LPNHE)
- Position reconstruction of particles for med app (IMNC)
- Reconstruction calorimeter objects with CNN, RNN for LHCb (LAL)
- DNN to optimize jet reconstruction using RNN for ATLAS (LPSC)
- RNN for **tau ID** and QCD rejection for CMS (IP2I)
- Reco position, tracking gamma for nuclear app. (IP2I)
- Full **Event interpretation** algorithm with DNN, Belle 2 (IPHC)
- DNN for calo reco and transfert to FPGA for L1 ATLAS trigger (CPPM)

Advanced Studies Interest

Color code

5. Uncertainty Assignment

Contributions:

- **Systematic** aware training (LAL)
- ML tools for handling uncertainties ATLAS (LPNHE)

Color code

6. Learning the Standard Model – searches for anomalies

Contributions:

• Search for anomalies (LPC)

Color code

8. Theory Applications

• LPSC: ML activities for HEP **phenomenology** (LPSC)

7. Computing Resource Optimization

CCIN2P3

Color code