

FCC-ee: Search for an heavy charged Higgs boson

Mouad HILALI Aix-Marseille Université, CPPM CNRS-IN2P3 Dr. Steve MUANZA

May 26, 2020

• Introduction to FCC-ee.

- Extensions of the Higgs sector.
- Description of the tools and procedure for Event generation.
 - Status of the MC production.

FCC-ee

- The ultimate goal for the next generation of circular colliders at CERN is a 100 TeV proton-proton collider.
- The FCC-ee (Previously named TLEP) is a e^+e^- circular collider foreseen in a new 80 km tunnel in Geneva.

Phase	Run Duration	CM Energy (GeV)	Integrated Luminosity (ab^{-1})	Event Statistics
FCC-ee-Z	4 years	88-95	150	$3 imes 10^{12}$ visible Z decays
FCC-ee-W	2 years	158-162	12	10 ⁸ WW events
FCC-ee-H	3 years	240	5	10 ⁶ ZH events
FCC-ee-tt	5 years	365	1.5	10 ⁶ t events

Extension of the Higgs Sector

- We are interested in the Minimal SuperSymmetric Standard model (MSSM).
- The scalars and their complex conjugates belong to multiplets of opposite chiralities → Single Higgs doublet is not enough for mass generation → Additional doublet is added (Two Higgs Doublets Model (2HDM)).
- Extended Higgs Sector:
 - \rightarrow 2 doublets of complex scalar fields:

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix}, \phi_2 = \begin{pmatrix} \phi_2^0 \\ \phi_2^+ \end{pmatrix}$$

 \rightarrow 2 × 2 × 2 = 8 d.o.f.

 \rightarrow left with 5 physical d.o.f.: h^0 , A^0 , H^0 , H^+ , H^- .

• Type II 2HDM the Q = 2/3 RH quarks couple to ϕ_2 and the Q = -1/3 RH quarks couple to ϕ_1 .

Georgi-Machacek (GM) Model

• Higgs bidoublet and two isospin-triplets in a bitriplet:

$$\phi = \begin{pmatrix} \phi^{0*} & \phi^+ \\ -\phi^{+*} & \phi^0 \end{pmatrix}$$
$$\zeta = \begin{pmatrix} \chi^{0*} & \xi^+ & \chi^{++} \\ -\chi^{+*} & \xi^0 & \chi^+ \\ \chi^{++*} & -\xi^{+*} & \chi^0 \end{pmatrix}$$

• Physical spectrum: Custodial symmetry fixes almost everything ! $SU(2)_L \times SU(2)_R \rightarrow SU(2)_{custodial}$:

χ

- ightarrow Custodial singlets mix ightarrow h^0 , H^0
- \rightarrow Custodial triplets mix \rightarrow (H_3^+, H_3^0, H_3^-)
- \rightarrow Custodial fiveplet $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--})$
- Custodial SU(2) symmetry allows the WZH coupling.

Search for a Heavy charged Higgs Boson in FCC-ee

- Simulation of a search for a Heavy Charged Higgs Boson at $\sqrt{s} = 240$ GeV and $\sqrt{s} = 365$ GeV, for different hypotheses of the charged Higgs masses at the FCC-ee.
- Evaluating the sensitivity of the FCC-ee to this signal in presence of all background processes.

- Test of different MC generators e.g. (Madgraph5, Whizard) to generate events.
- Event generation and fast detector simulation using Delphes.
- The analysis code using **Root** to extract the signal.

Matching Parton Showers and Matrix Elements

Matching :

- * Matrix Elements describe correctly hard and at large angles emissions.
- * Soft emissions or with small angles lead the matrix elements to diverge \rightarrow Cuts to eliminate them.
- * Parton showers account for the holes left in the phase space by these cuts \rightarrow Redundancies.
- ★ We need to eliminate the double counting between the full matrix elements and the parton showers.
 → Matching procedures. (CKKW scheme, the Lonnblad scheme, and the MLM scheme, FxFx scheme...)

Accounting for spin correlation effects

Spin Correlation :

- ★ Computation of the matrix element

 → Summing over initial spin states
 and averaging over final spin states
 → Loss of non-trivial angular
 correlations among final-state
 particles.
- ★ Procedure that includes spin correlation effects at NLO accuracy
 → MadSpin.
- For tt
 production, the observable that is most sensitive to spin correlation effects is cos(φ).
- * Including both spin correlation effects and QCD corrections \rightarrow reduced uncertainties, while keeping the correlations between the top decay products.

Figure: NLO cross sections differential in $cos(\phi)$ for $t\bar{t}H$ events, w/ ϕ the angle between the direction of flight of I^+ and the direction of flight of I^- .

- e^+e^- collisions at $\sqrt{s} = 240$ GeV
- Integrated Luminosity: $L = \int \mathcal{L} dt = 5ab^{-1}$

SM Higgs processes	MG5 v2.7.2	Whizard v3
$e^+e^- \rightarrow HZ$	$\sigma_{LO}=240.3\pm0.006~(\mathit{Stat})$ Ngen = 1.3(108.2%) Spin Correl., No Matching	$\sigma_{LO} = 240.310 \pm 0.002 \text{ (Stat) fb}$ Ngen = 1.221(101.6%) No Matching
$e^+e^- \rightarrow H \nu_e \bar{\nu_e}$	$\begin{split} \sigma_{LO} &= 22.62 \pm 0.03 ~(\textit{Stat}) \\ \textit{Ngen} &= 1.1 (972.6\%) \\ \textit{Spin Correl., No Matching} \end{split}$	
$e^+e^- \rightarrow e^+e^-H$	$\sigma_{LO} = 7.84 \pm 0.01 \text{ (Stat)}$ Ngen = 1.0(2551.0%) Spin Correl., No Matching	
Background processes (1/2)	MG5 v2.7.2	Whizard v3
$e^+e^- \rightarrow \tau^+\tau^-$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	$\sigma_{LO} = 1.92 \pm 0.16 \text{ (Stat) } pb$ Ngen = 0.0401(94.02%) No Matching
$e^+e^- \rightarrow W^+W^-$	$\begin{array}{l} \sigma_{LO} = 17.167 \pm 0.020 ~(\textit{Stat}) \\ \textit{Ngen} = 1.0 (1.2\%) \\ \textit{Spin Correl., No Matching} \end{array}$	
$e^+e^- \rightarrow ZZ$	$\begin{array}{l} \sigma_{LO} = 1.163 \pm 0.001 \; (\textit{Stat}) \\ \textit{Ngen} = 1.1(18.9\%) \\ \textit{Spin Correl., No Matching} \end{array}$	
$e^+e^- \rightarrow Ze^+e^-$	$\begin{array}{l} \sigma_{LO}=0.156\pm0.0001~(\textit{Stat})\\\textit{Ngen}=1.7(217.9\%)\\\textit{Spin Correl., No Matching} \end{array}$	
$e^+e^- \rightarrow W^{\pm}e^{\mp}\nu_e$	$\sigma_{LO} = 3.949 \pm 0.003 \text{ (Stat)}$ Ngen = 1.2(6.1%) Spin Correl., No Matching	

- e^+e^- collisions at $\sqrt{s} = 240$ GeV
- Integrated Luminosity: $L = \int \mathcal{L} dt = 5ab^{-1}$

Background processes (2/2)	MG5 v2.7.2	Whizard v3
$e^+e^- \rightarrow e^+e^-q\bar{q}$	LO MLM Matching	No Matching
(q = u/d/s/c)		
$e^+e^- \rightarrow e^+e^-b\bar{b}$	LO MLM Matching	No Matching
$ \begin{array}{c} e^+e^- \rightarrow q\bar{q} + (0/1)lp \\ (q = u/d/s/c) \end{array} $	Spin Correl., NLO FxFx Matching	
$e^+e^- \to b\bar{b} + (0/1/2)lp$	$ \begin{array}{ll} \sigma_{\textit{NLO}} &=& 4272. \pm \\ 48. \ (\textit{Stat}) \ \begin{pmatrix} +0.0\% \\ -2.4\% \end{pmatrix} \ (\textit{scale}) \ \textit{fb} \\ \\ \text{Spin Correl., NLO FxFx Matching} \end{array} $	$\sigma_{LO}=1.95\pm0.0002~(\textit{Stat})~\textit{pb}$ Ngen $=4.0(41.03\%)$ No Matching

Table: MC Production for FCC-ee run at $\sqrt{s} = 240$ GeV

- e^+e^- collisions at $\sqrt{s} = 365$ GeV
- Integrated Luminosity: $L = \int \mathcal{L} dt = 1.5 a b^{-1}$

SM Higgs processes	MG5 v2.7.2	Whizard v3
$e^+e^- \rightarrow HZ$	$\sigma_{LO}=\pm$ (Stat) Ngen = (%) Spin Correl., No Matching	$\sigma_{LO} = 124.161 \pm 0.004 \text{ (Stat) fb}$ Ngen = 0.176(94.50%) No Matching
$e^+e^- \rightarrow H \nu_e \bar{\nu_e}$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	
$e^+e^- \rightarrow e^+e^-H$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	
Background processes (1/2)	MG5 v2.7.2	Whizard v3
$e^+e^- \rightarrow \tau^+\tau^-$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	- No Matching
$e^+e^- \rightarrow W^+W^-$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	- No Matching
$e^+e^- \rightarrow ZZ$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	- No Matching
$e^+e^- \rightarrow Ze^+e^-$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	- No Matching
$e^+e^- \to W^{\pm}e^{\mp}\nu_e$	$\sigma_{LO} = \pm (Stat)$ Ngen = (%) Spin Correl., No Matching	- No Matching

Background processes (2/2)	MG5 v2.7.2	Whizard v3
$e^+e^- \rightarrow e^+e^-q\bar{q}$	LO MLM Matching	No Matching
(q = u/d/s/c)		
$e^+e^- \rightarrow e^+e^-b\bar{b}$	LO MLM Matching	No Matching
$e^+e^- \rightarrow q\bar{q} + (0/1)lp$	Spin Correl., NLO FxFx Matching	-
(q = u/d/s/c)		No Matching
$e^+e^- \rightarrow b\bar{b} + (0/1/2)lp$	Spin Correl., NLO FxFx Matching	-
		No Matching
$e^+e^- \rightarrow t\bar{t} + (0/1/2)lp$	$\sigma_{NIO} = 727.7 \pm$	-
	1.1 (Stat) $\begin{pmatrix} +3.1\% \\ -2.6\% \end{pmatrix}$ (Scale) fb	No Matching
	Ngen = 2.0(183.2%)	
	Spin Correl., NLO FxFx Matching	

Table: MC Production for FCC-ee run at $\sqrt{s} = 240$ GeV

- Successful generation of the $t\bar{t}$ background with good matching efficiency.
- Low matching efficiency (\sim 30%) for $q\bar{q}$ and $b\bar{b}$.
- Possible Sources of the issue :

 \rightarrow MadGraph doesn't take into account the "kT" clustering of the parton level event which is an important ingredient for the matching procedure. \rightarrow Found improvement of the efficiency if photon irradiation in the initial state (ISR) is taken into account in the generation of events in MadGraph.

Signal Production

• 2HDM Type II Model with $M_H = 125$ GeV and $M_h = 50$ GeV.

 \star Use of SUSY Les Houches Accord (SLHA) files that tell the MC generator how to simulate the simplified SUSY models.

 \star **Difficulty** : Unable to Generate a Heavy Charged higgs in e^+e^- collision, in a precise SUSY scenario through both considered MC Generators (MadGraph and Whizard).

• Generation of Signal in the GM Model.

 \star **Difficulty** : Model isn't implemented in any MC generator \rightarrow Feynrules (a Feynman rules calculation tool) \rightarrow Use of Universal FeynRules Output (UFO) files to simulate the processes of interest in MG5 or Whizard.

THANK YOU.

Backup

\sqrt{s} [GeV]	Channel	Mass range for the Charged Higgs [GeV]
240	t-channel	$206 \le M_H^{\pm} \le 240$
365	t-channel	$206 \le M_H^{\pm} \le 365$
365	s-channel	$206 \le M_H^{\pm} \le 285$

Table: Ranges of considered mass for the Charged Higgs boson w.r.t. the center-of-mass energy of the e^+e^- collision.

INTRODUCTION

- The Standard Model is a successful theory of particle interactions → Electro-weak and Strong interactions.
- All measurements at colliders and beyond are in agreement with Standard Model predictions (almost).
- No candidate for dark matter and it fails to explain the mass of neutrinos ...
 ⇒ the existence of physics beyond the SM (BSM).

The Brout-Englert-Higgs mechanism

- Brout-Englert-Higgs mechanism \rightarrow Existence of a scalar field whose Lagrangian is invariant under local gauge symmetry \rightarrow SU(2) doublet of complexe scalar fields: $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$
- The most general Higgs field potential energy $V(\phi, \phi^{\dagger})$ is given by: $V(\phi, \phi^{\dagger}) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$

- Infinite number of degenerate states of minimum energy and choosing one particular solution for ϕ_{min} gives a fundamental state: $\langle 0|\phi(\mathbf{x})|0\rangle = \begin{pmatrix} 0\\ \frac{v}{\sqrt{2}} \end{pmatrix}$
- \mathcal{L} is invariant under $SU(2)_L \otimes U(1)_Y$ local gauge symmetry group but the fundamental state is invariant under $U(1)_{em}$ Local group. \leftarrow Spontaneous Symmetry Breaking $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em}$.
- Redefining the Higgs field as a fluctuation around its vev: $\phi(\mathbf{x}) = \begin{pmatrix} 0 \\ \frac{\mathbf{y} + H(\mathbf{x})}{\sqrt{2}} \end{pmatrix}$
- All massive elementary particles gain their mass by coupling with the Higgs field. Fermions through Yukawa coupling and Gauge Bosons through Gauge coupling.