DOUBLE CHOOZ: STATUS REPORT

A.Meregaglia (IPHC) GDR Neutrino - 29th October 2009 - Strasbourg

INTRODUCTION

- Double Chooz is a reactor neutrino experiment.
- The goal is a measurement of the θ₁₃ mixing angle (or a limit on its value) using two identical detectors

MOTIVATIONS

- The discovery of a non-zero $\sqrt{1200}$ of 0 is a sector.
- Reactor oscillation experiments aim to the observation of $\overline{v_e} \rightarrow \overline{v_e}$ transition according to the oscillation probability:

$$P(\overline{v}_e \rightarrow \overline{v}_e) \approx 1 - \sin^2(2\theta_{13})\sin^2\left(\frac{\Delta m_{23}^2 L}{4E}\right)$$

- The advantages of this measurement with respect to long baseline oscillation experiments is a **clean measurement** of θ_{13} since: • Schreckenbach et al.
 - 1. It is a disappearance experin $\begin{bmatrix} 1 \\ 0.9 \end{bmatrix}$
 - 2. It has a short baseline (order

positron energy (MeV) to matter effects. arXiv:0910.2984 [nucl-ex]

0.5

04

68.30% CI

95.00% CI

99.73% CI

of the δ -CP phase.

60.2⁴

0.2

0.15

- 3. The dependence on Δm_{21}^2 is very weak : O ($\Delta m_{21}^2 / \Delta m_{31}^2$).
- Reactor neutrino experiments have lower (about one order of magnitude) discovery capabilities with respect to next generation long baseline experiments, however they have a short timescale.
- Moreover there are *hints* that favours *large values* of $\sin^2(2\theta_{13})$

 $\sin^2(2\theta_{13}) = 2.00 (+2.09 - 1.63) \times 10^{-1}$

EXPERIMENTAL CONCEPT

400 m

Far detector 1050 m

Near/Fa

A.Meregaglia

2 cores of 4.27 GW_{th} each

Ardellier et. al, hep-ex/0405032

NEUTRINO DETECTION

- Neutrinos are emitted isotropically at a "known" rate: 8 GW power \rightarrow 10²¹ neutrinos s⁻¹
- The energy spect $\mathbb{N}_a(\mathfrak{s}^{-1}) = \mathbb{N}_{O} \mathbb{N}_{O$
- The expected rate at Double Chooz is: 70€vents per day at far detector. 500 events per day at near detector.

Neutrinos are observed via Inverse Beta Decay (IBD): $\overline{v}_e + p \rightarrow e^+ + n$ The signal signature is given by:

- 1. Prompt photons from **e**⁺ annihilation (1-8 MeV).
- 2. Delayed photons from **n** capture on Gadolinium (8 MeV).
- 3. Time ($\Delta t \sim 30 \mu s$) and space (< 1m) correlation.

BACKGROUND

• There are two different types of background: accidental and correlated.

Accidental BG

- e⁺-like signal: radioactivity from materials, PMTs, surrounding rock (²⁰⁸Tl).
- n signal: n from cosmic μ spallation, thermalised in detector and captured on Gd or γ mimicking n.
- The expected rate at Double Chooz is:
 2 events per day at far detector.
 11 events per day at near detector.

Correlated BG

- Fast n (by cosmic μ) recoil on p (low energy) and captured on Gd.
- Long-lived (9 Li, 8 He) β +n-decaying isotopes induced by μ .
- The expected rate at Double Chooz is:
 1.6 events per day at far detector.
 5.2 events per day at near detector.

HOW TO IMPROVE CHOOZ LIMIT?

- The Chooz experiment did not observe any oscillation and set a limit on $\sin^2(2\theta_{13})$ of 0.1.
- How can we improve the experiment sensitivity to reach the final goal of 0.03 on the limit on $\sin^2(2\theta_{13})$?

Best Sensitivity @CHOOZ: R = 1.01 ± 2.8%(stat) ± 2.7%(syst)

• **Statistics**: Larger detector volume and longer exposure.

	CHOOZ	Double Chooz	
Target volume	5.55 m ³	10.3 m ³	
Target composition	6.77 10 ²⁸ H/m ³	6.55 10 ²⁸ H/m ³	
Data taking period	Few months	3-5 years	
Event rate	2700	Far: 40000 / Near: 500000 (3 y)	
Statistical error	2.8%	0.5%	

•	Systematics: Two detectors concept.		Chooz	Double-Chooz
		Reactor cross section	1.9~%	—
	Improved detector design (lower threshold, higher e ⁺	Number of protons	0.8~%	0.2~%
	and n efficiencies, calibration system).	Detector efficiency	1.5~%	$0.5 \ \%$
		Reactor power	0.7~%	—
	Reduced background (shielding and radiopurity).	Energy per fission	0.6~%	—

FAR LAB STATUS

- The laboratory is the site of the CHOOZ experiment.
- Integration of the detector is ongoing.
- Liquid storage building is ready and liquid delivery is expected in November/December.

Some numbers: 1 km baseline (15 000 y⁻¹) 300 m.w.e. (hill topology) μ -rate: ~20 Hz @IV μ -flux: ~0.4 Hz m⁻² @ detector level ISO 6 Clean Room

NEAR LAB STATUS

- The near laboratory is fully founded (7 partners)
- The site engineering study is completed.
- The construction is expected between July 2010 and July 2011.

Some numbers: 400 m from nuclear cores (150 000 y⁻¹) A 155 m tunnel to access the new lab 115 m.w.e (almost flat topology) μ -rate: ~250 Hz @IV μ -flux: ~5 Hz m⁻² @ detector level

DETECTOR DESIGN

250 ton Steel shielding 🗸

Inner Veto PMT installation 🗸

Buffer PMT installation

Gamma catcher and target installation \checkmark

To do X

- Buffer and Inner veto lid PMT installation (December 2009).
- Electronics and DAQ installation (January 2010).
- Detector filling (April 2010).
- Outer veto assembling (June 2010)
- Data taking is foreseen to start at the end of April 2010

TIMELINE AND SENSITIVITY

- Limit calculated for $\Delta m_{atm}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ (20% uncertainty).
- Efficiencies have been included.
- 1% 'bin-bin' uncorrelated error on background subtraction.
- Systematics for 1 detectors has been taken equal to Chooz experiment: $\sigma_{sys} = 2.7\%$.
- Systematics for 2 detectors has been assumed $\sigma_{sys} = 0.6\%$.

Exposure (years)

For 3 years of data taking with 2 detectors we obtain (if no-oscillation is seen):

 $\sin^2(2\theta_{13}) < 0.032$ at 90% C.L.

COMPARISON

- DC is late with respect to the original proposal: people often asks "is it still worth it?" The answer is **yes** since:
- 1. In case a signal is seen an independent measurement is very important.
- 2. Although RENO and Daya Bay have managed so far to respect theirs schedule, delays are always round the corner and not just for DC experiment.
- 3. The use of many reactor, on the long term reduces the systematics and increases the statistics. However, a full understanding of the detector response and evaluation of the errors is more complicated and might take longer than expected.

THE END