OPERA Experiment status

Cécile Jollet, IPHC, Université de Strasbourg

GDR Neutrino, 29th October 2009

OPERA experiment

- * The OPERA experiment is designed to provide an unambiguous evidence for $v_{\mu} \rightarrow v_{\tau}$ oscillation in the region of atmospheric neutrinos by looking at v_{τ} appearance in a v_{μ} beam.
- CNGS beam is designed to maximise v_τ CC interactions at the LNGS.
- The separation of the v_τCC from the dominant v_µ interactions is based on the identification, event by event, of the peculiar decay topology of the τ: its decay length is around 280 µm, and the technic of photographic emulsion is used to measure it.

Target Mass: 1.25 kton Design goal: 4.5×10¹⁹ pot/year Long baseline: 730 km

$< E \nu_{\mu} >$	17 GeV
ν _μ (CC+NC)/ year	~ 4700
v_{τ} CC/year	~20

2

OPERA detector

Target area (ECC + CS + TT) Muon spectrometer (Magnet+RPC+PT) Brick Manipulator System

2850 bricks/wall, 53 walls

OPERA efficiencies

* Estimated detector efficiencies (v_{μ} CC and NC events):

	CC+NC
Trigger	99 %
Brick-Finding	80 %
Changeable-Sheet	90 %
Geometry (edge effect)	94 %
Vertex localisation	85-90%
Total	60 %

* Estimated ν_τ CC efficiencies and number of signal and background events for 5 years run,
 4.5×10¹⁹ pot/year:

			Signal		
channels	ε (%)	BR(%)	∆m ² =2.5x10 ⁻³ eV ²	∆m ² =3.0x 0 ⁻³ eV ²	Background
τ → μ	17.5	17.7	2.9	4.2	0.17
τ → e	20.8	17.8	3.5	5.0	0.17
τ → h	5.8	50	3.1	4.4	0.24
τ → 3h	6.3	15	0.9	1.3	0.17
ALL	ε×BR	=10.6%	10.4	15.0	0.76

2008 run: CNGS performance

Type of events	Raw	Corrected by efficiencies
$\nu_{\mu}(CC+NC)$	1860	1100
$v_{\tau} CC$	8	0.8
Charm	57	26

2008 run: Status of event location

* Contained events in the electronic detectors: 1301 with muon, 503 without muon.

	with muon	without muon	Total
Events extracted	1242	356	1598
Bricks developed	993	249	1242
Vertices located in ECC	738	135	873
Vertices located in the dead material	16	6	22

* Deduced efficiencies:

	with muon	without muon	Total	
Brick-Finding+CS efficiency	80 %	70 %	78 %	
Vertex localisation efficiency	76 %	56 %	72 %	
Total efficiency	61 %	34 %	56 %	proposal: 60%

- * Observed Charm events so far: 15.
- * Expected Charm events for the checked events (procedure of decay search has been applied): 17.

2009 run: CNGS performance

- 2955 candidate interactions in the target (2.846×10¹⁹ pot).
- present extrapolation for the end of the run (end of november): 3.2×10¹⁹ pot (~ 70% of a nominal year).
- If the extrapolation is correct, we expect:

Type of events	Raw	Corrected by efficiencies
$\nu_{\tau} CC$	14	1,4

* With the 2008 data, we expect 2 v_{τ} events.

2009 run: Status of event location

- Analysis of 2009 events is ongoing while finishing the 2008 queue.
- Contained events in the ED: 2133 with muon, 822 without muon
- 1131 CS scanned, and 631
 events tagged for events
 location.

	without muon	with muon	Total
Brick scanning started	21	113	134
Vertices located in ECC	13	76	89
Interactions in the upstream brick	0	7	7
Vertices in the dead material	0	1	1

Analysis in progress: kinematics studies

- Studies on 2008 and 2009 data using only electronic detectors, a fiducial cut is done in order to consider only contained events, and we separate the events in two categories: with and without muons.
- * Studies of kinematical variables using electronic detector
 - muon identification.
 - * muon momentum (range+bending in magnetic field).
 - deposited energy.
 - shower profile.
 - ratio NC/CC.

Muon identification

- * The muon identification is of fundamental importance for the improvement of the efficiency in the $\tau \rightarrow \mu$ channels and for the reduction of charm background in all τ decay channels.
- * It is done before the scanning using the electronic detectors and according to the result the brick-finding algorithm will be applied (NC and CC are different).
- The variable used is: (track length ×density of the crossed materials) and a cut of 660 g×cm⁻² is put on this variable.

Very good agreement between data and MC for the muon track.

Muon momentum

- * The muon momentum is calculated using a Kalman filter (range and bending in magnetic field).
- * We find a good agreement between MC and data.

Deposited energy

- The deposited energy in the Target-Tracker is calculated using a precise calibration (gain measurements done regularly with LED, and mip calibration using real cosmic tracks).
- * We find a good agreement, but on average it seems that more energy is deposited in real data.

Backscattering

- * The backscattering is a result of the wall-finding algorithm (based on a Neural-Network).
- * We find an important difference between data and MC: backscattering is higher in data than in MC.
- * For the MC and v_{μ} CC events, we find a good efficiency of the Wall-Finding (for 84% of the cases the wall is the correct one, and for 14% it is the following one).

Shower transverse profile

- We calculate the RMS of the transverse distribution of the shower in the X and Y projections where the Target-Tracker hit position are weighted by the number of p.e.
- * The real events seem to have a larger transverse profile.
- * It seems that the «hadronic activity» is higher in the real data.

NC/CC ratio

To be independent of the tracking efficiency, an event is identified as CC if the number of touched planes is more than 14.

MC	CC identified	CC misidentified	NC identified	NC misidentified	
	96.1%	3.9%	69.0%	31.0%	
MC	OpCarac (fiducial vo	olume) efficiency CC	OpCarac (fiducial volume) efficiency NC		
IVIC	96.	9%	88.2%		
Data	CC ide	entified	NC identified		
Data	(1928) 78.0%		(545) 22.0%		
	Op(effic for	CaracCCTrueciencyidentifiednumberCCefficiencyof CC	OpCaracNCefficiencymisidentifiedfor NCefficiency	True ratio NC/CC = 0.29	
	$CC_{measured} = \epsilon_{Op}$	$p_{CarCC} imes eff_{CC} imes n_{CC}$ -	$+ \epsilon_{OpCarNC} \times ineff_{NC}$	$\times \epsilon_{NC/CC} \times n_{CC}$	
	$NC_{measured} = \epsilon_{Op}$	$CarCC \times ineff_{CC} \times n_{CC}$	$C + \epsilon_{OpCarNC} \times eff_{NC}$	$\times \epsilon_{NC/CC} \times n_{CC}$	
		MC NC/CC	= 21.2%		
		Data NC/CC	= 28.3%		

We find more NC events in the data, which are due to interacting neutrons coming from a neutrino interaction in the rock or materials in front of the detector. Characterisation of this «noise» under study! 15

Conclusions

- CNGS performances improved: (2008+2009) runs are expected to be as 1 nominal year ; 2010 is expected as a nominal year.
- 15 charm candidates found: systematic decay search started with an uniform selection on all the data sample.
- * Analysis of 2009 progressing while completing the queue of 2008 run.
- * First $\tau(s)$ expected soon in the analysis of 2008/2009.
- We find a good agreement between data and MC for the muon: reconstruction, identification, momentum measurement.
- The hadronic energy and the transverse profile seem slightly overestimated in the data with respect to simulation (based on Gfluka).
- * The fraction of backscattering seems larger in the data (which affect the wall-finding). We will do new simulations using full Fluka transport.