SURFACE ARRAY Détecteur de surface pour ANTARES

JP Ernenwein CPPM

GDR V
29/10/2009

Connection of lines

Detection principle

3D matrix

Cherenkov light (μ)

Charged current interaction (W)

Good angular resolution (O(degree) @ E>10 TeV), Poor energy resolution (factor 2-3)
tit tishower good energy resolution (O (30\%)), poor angular resolution ($O\left(10^{\circ}\right)$)

Signal \& background

Expected neutrino sources

Galactic:

Supernovae,

 Supernovae remnants, Micro Quasars:

Dark Matter : neutralino annihilation in massive objects (Sun, Earth, GC)

EXTRA GALACTIC:

GRB

M 87, HST

Measurement of the position of the lines

Position of line anchor : acoustic measurements from boat, itself positioned with a GPS.

Angular resolution (median)

Can be cancelled by the uncertainty on the absolute pointing: To be measured independently : Moon shadow, cliff shadow: O(year) but free, Surface Array : O(week) but not free!

Atmospheric showers

CORSIKA

Threshold 100 MeV

F. Schmidt, "CORSIKA Shower Images",http://www.ast.leeds.ac.uk/ ~fs/showerimages.html

Proton $10{ }^{14} \mathrm{eV}$ $h^{1 s t}=17642 \mathrm{~m}$
hadrons
muons
electrs

Required properties of a detection unit :

1 MIP = 2.1 MeV ~ 20000 photons
μ in plastic scintillator 1cm thick (REXON RP200).
PMT 2" at the center + reflectors on each side: $O(0.1 \%)$ detection efficiency

About 20 pe detected by the PMT for a MIP @ corner

Gain 310^{5}
(Hamamatsu R6231) threshold ~ 15 mV for one MIP

Time resolution Crossing of the threshold: σ of a few ns

Measurement of time resolution

Implementation

Electronics (commercially available)

We search for some offset in the mean of $\Delta \theta$ and $\Delta \phi$: simulations of performances

event by event comparison of : zenith, azimuth of reconstructed tracks (SA vs ANTARES). Estimate of the event rate.

Corsika shower simulation : protons with E in $\left[10^{5}, 5.10^{6}\right] \mathrm{GeV}$ 5 or 8 days equivalent (5510^{4} showers / day).

Reconstruction based on Δt from a least 3 scintillators requiring 4 MIPs of threshold for each (resolution $\sim 3^{\circ} \mathrm{rms}$ for setups with ~ 10 detectors) : ~ 3 rec evts / min.

Simulation made in coll with HOU (HELYCON detectors)

Results of simulations for 10 detection units

COSTS

3.6 k $€$ per detection unit including electronics for digitization (MATACQ)
$90 \mathrm{k} €$ for 5 effective days of sea campain

FULL APPARATUS

32 Detection Units on a platform $35 \mathrm{~m} \times 15 \mathrm{~m}$ or a boat (limitation: size of the vessel, electronics channels)

VESSELS ...

Boat or platform + boat

How to make it cheaper: electronics

CPPM home made solution for electronics (under study) : from $1200 €$ / channel to $200 € /$ channel : re-use and adaptation of an existing solution.

All 32 channels connected to a single central card sampling the signals with a 1-2 ns cell.
sampling How to make it cheaper: electronics

Steps of the project :

November 2009: 4 units under test (1 MATACQ card)

January 2010: 8 units (2 MATACQ card, measurement of angular resolution by splitting detector)

March 2010: decision on the choice commercial electronics/home made

Summer 2010: N units ready (depending of the funding) for sea operation

Achievable constraint in 10 days, 32 units :
0.2° in zenith and 0.4° in azimuth.

