SURFACE ARRAY Détecteur de surface pour ANTARES

JP Ernenwein CPPM

GDR **V** 29/10/2009

Connection of lines

Detection principle

3D matrix

42°

Cherenkov light (μ)

required / sensitivity: / photo-electron shower

good
energy
resolution
(O(30%)),
poor
angular
resolution

 $(O(10^{\circ}))$

Charged current interaction

(W)

track:

Good angular resolution (O(degree) @ E>10 TeV), Poor energy resolution (factor 2-3)

© François Montanet

Measurements time (O(ns)), amplitude (30%) & hit position(O(10 cm))

Muon track or shower measurement

Signal & background Down going background events (atm muons and $E_{v}^{2} \cdot Flux(E_{v})$ muons from neutrinos) atmosphere **Up going background** Ex of diff. flux muons from sea neutrinos) AGN log 9 log(E/GeV) Sr^{-1} 10-7 Atm muons Profondeur 2400 m $d\Phi/d\Omega$ cm⁻² s⁻¹ E > 1 TeV 10-9 10-11 10⁶ Cosmic Muons from neutrinos 10-13 atm neutrinos 10⁻¹⁵ -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 $\cos \theta_{\mathfrak{u}}$

Expected neutrino sources

Galactic: Supernovae, Supernovae remnants,

Micro Quasars:

Dark Matter: neutralino annihilation in

massive objects (Sun, Earth, GC)

EXTRA GALACTIC:

GRB

Street 105

Output

AGN

M 87, HST

AGN

Point source search with ANTARES in its 5 lines stage

Measurement of the position of the lines

Position of line anchor: acoustic measurements from boat, itself positioned with a GPS.

Angular resolution (median)

Can be cancelled by the uncertainty on the absolute pointing:

To be measured independently:

Moon shadow, cliff shadow: O(year) but free,

Surface Array: O(week) but not free!

Atmospheric showers

CORSIKA

F. Schmidt, "CORSIKA Shower Images",http://www.ast.leeds.ac.uk/~fs/showerimages.html

Required properties of a detection unit:

Measurement of time resolution

Electronics (commercially available)

We search for some offset in the mean of $\Delta\theta$ and $\Delta\phi$: simulations of performances

event by event comparison of : zenith, azimuth of reconstructed tracks (SA vs ANTARES). Estimate of the event rate.

1000 m

Corsika shower simulation: protons with E in [10⁵,5.10⁶] GeV 5 or 8 days equivalent (55 10⁴ showers / day).

Reconstruction based on Δt from a least 3 scintillators requiring 4 MIPs of threshold for each (resolution ~ 3° rms for setups with ~10 detectors) : ~3 rec evts / min. Simulation made in coll with HOU (HELYCON detectors)

2 tested distances :

just above ANTARES (0m)

1 km apart (1000m, zenith ~ 24°)

Results of simulations for 10 detection units

COSTS

3.6 k€ per detection unit including electronics for digitization (MATACQ)

90 k€ for 5 effective days of sea campain

FULL APPARATUS

32 Detection Units on a platform 35m x 15m or a boat (limitation: size of the vessel, electronics channels)

VESSELS ...

Boat or platform + boat

How to make it cheaper: electronics

CPPM home made solution for electronics (under study): from 1200€ / channel to 200€/channel: re-use and adaptation of an existing solution.

All 32 channels connected to a single central card sampling the signals with a 1-2 ns cell.

sampling How to make it cheaper: electronics

Steps of the project:

November 2009: 4 units under test (1 MATACQ card)

January 2010: 8 units (2 MATACQ card, measurement of angular resolution by splitting detector)

March 2010: decision on the choice commercial electronics/home made

Summer 2010: N units ready (depending of the funding) for sea operation

Achievable constraint in 10 days, 32 units: 0.2° in zenith and 0.4° in azimuth.