INTERNSHIP OF MASTER 1: EXPERIMENTAL INVESTIGATION OF A MINIMAL SURFACE: THE CATENOID

TITUT

Charles

ALICE REQUIER AND TIMOTHÉE BOUTFOL

SUPERVISED BY THIERRY CHARITAT AND WIEBKE

DRENCKHAN 🔊

AIM OF THE INTERNSHIP

from wikipedia.org

DEFINITION OF MINIMAL SURFACES

- SURFACE COST ENERGY: E=\.S
- DEFINITION OF MINIMAL SURFACES

from sciencesource.com

• SURFACTANTS ON THE SURFACE OF WATER

APPLICATIONS OF MINIMAL SURFACES

• ARCHITECTURE

from wikipedia.org

• OUR SUBJECT OF STUDY: THE CATENOID

from wikipedia.org

- I-EXPERIMENTAL PROCEDURE
- II-EXPERIMENTS AND RESULTS

- III-THEORY
- IV-SUMMARY AND CONCLUSION

I-EXPERIMENTAL PROCEDURE

- EXPERIMENTS
 - SETUP
 - LABVIEW
- IMAGE ANALYSIS
 - IMAGE J
- PROGRAMMING
 - C++ AND PYTHON OR RSTUDIO

EXPERIMENTAL SETUP

I-Experimental Procedure

I-Experimental Procedure

IMAGE ANALYSIS (IMAGE J)

I-Experimental Procedure

USEFUL QUANTITIES

- h height of the catenoid
- a neck radius i.e. minimum radius of the catenoid, at h/2

PROGRAMMING

I-Experimental Procedure

Catenoid s profile

у

. У_{тах}

 y_{min}

 X_{min}

OUR FOCUS

- EVOLUTION OF THE NECK RADIUS AS FUNCTION OF THE HEIGHT
- PARAMETERS
 - THE SPEED OF THE MOTOR
 - THE LIQUID USED
 - GEOMETRY OF THE PLASTIC PIECES

1ST EXPERIMENT

- LIQUID USED: BASIC LIQUID SOAP
- PLASTIC PIECES: CIRCLES OF EXTERNAL DIAMETER 3 CM

Critical point : Pc = (1.33 ; 0.55)

• Catenoid not solid enough to reach the instability point

Critical point : Pc = (1.33; 0.55)

17

• For low h : a/R > 1

2ND EXPERIMENT

- LIQUID USED: J-LUBE
- PLASTIC PIECES: CIRCLES OF EXTERNAL DIAMETER 3 CM

Critical point : Pc = (1.33 ; 0.55)

Critical point : Pc = (1.33 ; 0.55)

Catenoid more stable

Problem :

• For low h : a/R > 1 stronger

Critical point : Pc = (1.33 ; 0.55)

3RD EXPERIMENT

- LIQUID USED: BASIC LIQUID SOAP
- PLASTIC PIECES: CIRCLES WITH GROOVE AND EXTERNAL RADIUS 3 CM

Critical point : Pc = (1.33 ; 0.55)

Critical point : Pc = (1.33; 0.55)

Conclusion : shape has an impact only on stability

Evolution of the critical neck radius and critical height as function of the velocity

- Theoretical critical neck radius ac = 0.55
- Theoretical critical point hc = 1.33

Critical point : Pc = (1.33 ; 0.55)

UNCERTAINTIES

- OVER h: VELOCITY, BECAUSE ONE SECOND BETWEEN TWO IMAGES
- OVER a_c : DISTANCE BETWEEN THE TWO LAST POINTS ON THE GRAPH FOR A GIVEN SPEED

 \rightarrow WE DETERMINE Δa_c

• OVER $\frac{a_c}{R}$ AND $\frac{h}{R}$:

II-Experiments and Results

$$\Delta\left(\frac{X}{Y}\right) = \frac{Y}{X} \sqrt{\left(\frac{\Delta X}{X}\right)^2 + \left(\frac{\Delta Y}{Y}\right)^2}$$

•
$$\Delta R = \frac{0.5 \times graduation}{\sqrt{3}} = 0.2887mm$$
; $R = 13mm$; a_c , h EXPERIMENTAL VALUES

Critical point : Pc = (1.33 ; 0.55)

SUMMARY

- NO IMPACT OF THE SPEED
- NO IMPACT OF THE LIQUID ON THE MINIMAL RADIUS
- IMPACT OF THE LIQUID ON THE STABILITY OF THE CATENOID
- IMPACT OF THE GEOMETRY ON THE STABILITY

III-THEORY

• EXPRESSION OF THE ENERGY

E=¥S

STARTING POINT: LAGRANGIAN OF THE SYSTEM

 $\mathcal{L} = \rho(z) \sqrt{1 + {\rho'}^2(z)}$

SATISFYING THE EULER-LAGRANGE EQUATION:

$$\frac{\partial \mathcal{L}}{\partial \rho} = \frac{d}{dz} \left(\frac{\partial \mathcal{L}}{\partial \rho'} \right)$$

• OBTAINING A 2ND ORDER EQUATION IN ρ :

 $1 + {\rho'}^2(z) - \rho(z)\rho''(z) = 0$

• SOLVING IT WE FINALLY OBTAIN:

$$\rho(z) = a \cosh(\frac{z}{a} + C)$$

from Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films – Louis Salkin

from Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films – Louis Salkin

• IN OUR CASE : $R_1 = R_2 = R$

BOUNDARY CONDITIONS:

$$\rho(0) = \rho(h) = R$$

$$\rho(z) = a \cosh(\frac{z}{a} - \frac{h}{2a})$$

Evolution théorique du rayon de la caténoide

from Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films – Louis Salkin

• IN OUR CASE : $R_1 = R_2 = R$

BOUNDARY CONDITIONS:

$$\rho(0) = \rho(h) = R$$
$$\rho(z) = a \cosh(\frac{z}{a} - \frac{h}{2a})$$

Evolution du rayon de la caténoide pour v=1mm/s, savon sans rainure

III-Theory

•
$$\rho(0) = \rho(h) = R$$

$$\Rightarrow \frac{h}{R} = \frac{2a}{R} \arg \cosh(\frac{R}{a})$$

Theoretical evolution of the minimal radius as function of the height

III-Theory

$$\cosh\left(\frac{\Delta X}{2}\right) - X = 0$$
$$\Delta = \frac{h}{R}; X = \frac{R}{a}$$

- $\Delta > \Delta_c$: NO CATENOID EXISTS
- $\Delta = \Delta_c \approx 1.33$: Only one catenoid satisfies the boundary conditions $X_c \approx 1.81$
- CATENOID COLLAPSES INTO TWO PLANAR FILMS SUSPENDED ON THE TWO RINGS (CASE OF THE SOAP + GROOVE)
- $\Delta < \Delta_c$: TWO CATENOIDS POSSIBLE, BUT THE LARGER NECK IS LESS STABLE

•
$$\frac{a_c}{R} = \frac{1}{X_c} \approx 0.55$$
; $\frac{h_c}{R} = \Delta_c \approx 1.33$

Graph of cosh(DX/2) - X as a function of X for different values of D

hauteur normalisee h/R

IV-SUMMARY AND CONCLUSION

 \bigcirc

IV-Summary and Conclusion

SUMMARY OF OUR SCIENTIFIC APPROACH

41

• 1ST STEP: UNDERSTAND MORE THE MECHANISM

- 2ND STEP: MAKE FIRST MEASUREMENTS
- 3RD STEP: SOLVE PROBLEMS MET
- 4TH STEP: ANALYSE ALL THE DATA
- 5TH STEP: COMPARE THEM BETWEEN THEMSELVES AND WITH THE THEORY

CONCLUSION

- RESULTS AGREE WITH THE THEORY. NEVER GO OVER THE CRITICAL POINT
- NO DEPENDENCE OF NECK RADIUS ON THE SPEED, LIQUID USED, PLASTIC PIECES
- IT LOOKS TO BE INDEPENDENT OF ANY PARAMETER

IV-Summary and Conclusion

STABILITY DEPENDS ON SEVERAL PARAMETERS (LIQUID, PLASTIC PIECES)

ADDITIONAL EXPERIMENTS

43

- CHANGING THE GEOMETRY (ELLIPSOID)
- CHANGING THE RADIUS OF THE PLASTIC PIECES (LIKE IN THE ARTICLE)
- ASYMMETRIC CATENOID ($R_1 \neq R_2$)
- ELASTIC EXPERIMENTS (GOING BACK IN THE MIDDLE OF THE EXPERIMENT)
- STATIC OBSERVATION

IV-Summary and Conclusion

FOCUS MORE ON THE STABILITY OF THE CATENOID

THANKS FOR YOUR ATTENTION !

