de Strasbourg

Testing planes of dwarf galaxies with a correlation function

Master 1 internship, year 2020

from Alex Hubert & Axel Rymar Mentor : Oliver Müller

de Strasbourg

Dwarf galaxies

de Strasbourg

Model ACDM :

Proportions in the Universe :

•Matter and energy : 5%

•Dark matter : 27% (85% of the total mass)

•Dark energy : 68%

de Strasbourg

Satellite planes, is the Local Group special?

Credits :Pawlowski (2018)

de Strasbourg

Plane Fitting method

Centroid of all positions.

$$\boldsymbol{T}_0 = \sum_{i=1}^N \left[(\boldsymbol{r}_i - \boldsymbol{r}_0)^2 \cdot \boldsymbol{1} - (\boldsymbol{r}_i - \boldsymbol{r}_0) \cdot (\boldsymbol{r}_i - \boldsymbol{r}_0)^{\mathrm{T}} \right],$$

Moments of inertia tensor around the centroid.

Method used : Pawlowski et al. 2013

The eigenvector of the tensor corresponding to the largest eigenvalue is the normal to the plane containing the centroid.

de Strasbourg

Plane Fitting method

MW and its satellite galaxies (plane face on) 200 150 100 ... 50 ... 0 -50 -100 -150-200_150_100_50 0 50 100 150 200 -200 -200 200 150 100 -100 -150

In line with Pawlowski et al. 2013

de Strasbourg

Plane Fitting method

7

de Strasbourg

4 points correlation method

- Take every 4 combinations possible for our sample
- Apply to each combination the Plane Fitting technique to deduce its normal
- Convert all the normals in spherical coordinates to have RA and DE

de Strasbourg

4 points correlation method

Normals with 4points correlation function MW

Normals with 4points correlation function M31

de Strasbourg

Comparison with the literature : Milky Way

de Strasbourg

Comparison with the literature : Andromeda

Normals with 4points correlation function M31 folded

de Strasbourg

Different M31 databases

Normals with 4points correlation function M31 Normals with 4points correlation function M31 1.5 1.5 1.0 1.0 0.5 0.5 Latitude (rad) Latitude (rad) 0.0 0.0 -0.5-0.5 -1.0-1.0-1.5-1.52.0 2.5 0.0 0.5 1.0 1.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Longitude (rad) Longitude (rad)

14

de Strasbourg

To conclude ...

Observatoire astronomique de Strazbourg

- Planes of satellites verified for MW and M31
- Lack of 3d data for galaxies out of the local group.
- This method should be applied on 2d data;

de Strasbourg

More versatil : 2D planefitting

