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Introduction
Markovian evolution

Be the evolution operator : [J(¢,¢y) with ¢ > tg

Suchthat: (¢, t,)U(tr, to) = U(t, to)

U(t,ty) =1
oU (t, o) _H
o )., h

U describes the evolution of a state from t, to t. Be G(y, t;x,t0) = (y|U(¢, to) |x)



Introduction
Markovian evolution

Let’s divide [x,y] in N+1 subintervals.

U(t,to) =U({,tn)U(t, tn-1) - U(t1, o)
A
| 1= [dz|z)(z| |

: . . B ' . ”t >
-1 g tk+1\\\tn—2 tn1 t
y,t

G(y,t;x,to)=/ dzy---dzn (Y| U tn) o) (@n| U Ev-1) [en-1) - - - (21| U(t1, o) |@)

x,to

y,t Sl
= / [dx] exp (ZL>
x,to h
J. Zinn-Justin Path Integrals in Quantum Mechanics, Oxford University Press, 2005



Path integral for a free particle

* Be a free particle, evolving from x (at t;) toy (att): £ = %x‘

N
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* decimation (renormalization theory) :
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Path integral for a quadratic Lagrangian

*Be a harmonic oscillator into a magneticfield: ,_ ™, b(t)zd — lc(t)x2 — e(t)x
2 2

*Split x to “classical” path (Euler-Lagrange solution) + fluctuations: x =z +y with y(¢;) =y(tf) =0

2
*Taylor expansion of the action : S[z] = S[z] +£/‘%S/)/y 4+ (‘; g) )2
i

y,t

Gy, t;z,t0) = | [da] exp( i %x]) exp( — 625 [z]y? )

z,to

, 0,t
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Electron in a magnetic field
Analytical computation

Be an electron in a magnetic field B defined by : B = Be,

with potential vector A = Byex + Brey

Six] = /t 452(1) + (1) - A(x(1)

2
_NZH (z; — x; )—pij—i( —EB:B-)Q
N = Po g\t i—1 2m 2m Py c 7

« 2D harmonic oscillator like », corresponding to a quadratic Lagrangian



Electron in a magnetic field
Analytical computation

M \*?  wrt/2 i
Glaigt)i= (27rz'ht> sin(wrt/2) &P (ﬁsd)

m [z —2z; W wrt
= (S5 ot (2 (o = 000+ (v = )+ wnlny = ayu) +wn(opyy — )

Notes :
-In classical mechanics, the electron describes circles in the xy-plane.

-the electron is free along z-axis



Parametrization with coupling running
constants

Let’s parametrize the action using running coupling constants :
m(t) m(t) m(0)

g, N2

Wr, Wl t
x x y|+ [x -yl

. . 1 (.ULt
With the running mass : m(t) = §th cot =S

And Landau (cyclotron) frequency : wjy =

m(0)c



Numerical simulations

* We tried doing simulations for a harmonic oscillator using Monte Carlo simulations and the
metropolis algorithm.

*The basis of the metropolis algorithm is to take a random change in one variable and check the
change in action and following the principle of least action decide the probability of taking or
rejecting a move

*The propagator for the harmonic oscillator is given by:

/ m 1 _
Gz, t;x ) = AL exp{—ﬁwD 13’:}

*Where D1 is the inverse of the Feynman green function that we get from functional derivative

of the generator functional . T .
D™ = 3(8,5)2 — mw?® + i€




Numerical simulations

*The extra imaginary term ie comes from the generator function which is the Feynman Green
function

*The expectation value for an observable x is given by

_ Jaxp(x)x
Sx == [ dx P(x)
*But if the probability is given by a complex number it becomes more difficult. We can then use a
Sma” tr|Ck Idmpf(w)eiqba:
__ JdzP'(®) _ <e'Px>
< X >— fd:nP’(m)ew - <ei¢>
[ dapP’ (®)

*Where P’ is the absolute magnitude of the probability and ¢ is the polar angle



Numerical simulations

°In our case the € will be the guidance for the metropolis and will stabilize of ¢.

*We found that at low values of € the integral diverges and for us € = 0 so we run into a problem
where we need to keep € around € = 1 even if it’s not very physical
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Numerical simulations
CTP formalism

*The Closed Time Path (CTP) formalism can be summed by the imagining the world line of a
system and then reversing the time arrow at the end and thus creating two world lines one in
the “positive” time direction and the other in the “negative” direction

*Introducing semi-holonomic forces (non conservative
forces)

*We will thus have 2 “actions” for each subsystem X

*And we can then define a new effective action X

t

S = Slay] — Sla]

t t 21—t

Positive and negative systems, J.Polonyi 2016



CTP formalism

*If we take the harmonic oscillator Lagrangian and add a semi-holonomic friction term and after
removing the non-unitary terms we can the final Lagrangian for the harmonic oscillator given by:

L =mii? — mvax®i — mwae + §d2:cd2 + §d0:vd2

*Where x = (x4 +x_)/2 and x = x, — x_. v is the friction term and d, d, will describe the
decoherence between the positions and velocity, respectively.

*The d,, d, will stabilize the metropolis algorithm here.

*Physically they represent the decoherence between the system and the environment and this
show the importance of the openness of the system
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