First physics results at Belle II: search for dark matter portals

Laura Zani

Marseille, 2020/04/20

Outline

- Part I \rightarrow physics motivation and experimental context
- Part II \rightarrow the analysis strategy
- Part III \rightarrow data validation and systematic uncertainties
- Part IV \rightarrow results and conclusions

Part I

- Dark matter theoretical frameworks and searches
- The B-factory concept and the second generation:
 - SuperKEKB collider and Belle II experiment.

Introduction to dark matter

Dark Matter (DM) is one of the most compelling issue for physics beyond the Standard Model.
 Many astrophysics and cosmological observations provide evidences for its existence:

F.Zwicky, 1933

Virial Theorem: $2E_{kine} = - U$ $\langle v(r)^2 \rangle = GM(r)/r$

Gravitational Lensing

A large amount of not-luminous matter must populate galaxy bulks.

Dark matter candidates

→ Modified Newtonian Gravity...

• DM is an unsolved puzzle \rightarrow Unknown origin and nature!

Light dark matter scenarios

- No evidences for WIMP favor light DM hypotheses
- Possibility of *light dark sectors* motivates the search for a *DM mediator* (φ):

Measured from cosmological observations

Light dark sectors: portals

 \rightarrow According to the spin and parity of new mediator, **3 renormalizable portals** with dimensionless couplings are allowed by Standard Model (SM) symmetries:

Dark matter detection

1) Detect the energy of *nuclear(electron) recoil*

3) DM weakly couples to SM particles and it can be produced in *SM-particles annihilation* at *accelerators*

2) Detect the *flux of visible particles* produced by *DM annihilation, decays* or *conversions*

 Sensitivities and upper limits on WIMP-nucleon spinindependent scattering cross section (*European Strategy, Granada 2019*)

This presentation will focus on DM searches at B-factories

Experiments at B-factories

B-factories: dedicated experiments at e^+e^- asymmetric-energy colliders for the production of quantum coherent BB pairs \rightarrow time dependent **CP violation studies**.

$$e^+e^- \rightarrow \Upsilon(4S)$$
 [10.58 GeV] $\rightarrow B\overline{B}$
 $\Upsilon(nS) = bound state of$

b quark and b anti-quark

First generation of B-factories

at the KEKB collider (KEK, Japan) at the PEP II collider (SLAC, California)

- Clean environment \rightarrow lower background, high resolution
- Hermetic detector with excellent PID capability
- Efficient reconstruction of **neutrals** (π^0 , η , ...):
 - ⁻ closed kinematics \rightarrow study recoiling system and *missing energy* final states

Physics at B-factories

SuperKEKB accelerator

Belle II collaboration

Belle II detector

• The Belle II detector has better resolution, PID and capability to cope with higher background

Belle II data taking

0.5 fb⁻¹

Phase 2: April – July 2018

- Partial VXD installed (one ladder per each layer)
- Verify nano-beam scheme, commission the detector and the machine

<u>Phase 3: March 2019 – ...</u> $\sim 10 \text{ fb}^{-1}$ collected in 2019

VXD detector installed

- \rightarrow 4 full layers of silicon strips
- \rightarrow 1 full of pixels +1/6 (installation finalized ~2021)

Phase 3 FINAL GOAL : 50 ab⁻¹

Overview of dark searches at Belle II

Dark Sector Candidates, Anomalies, and Search Techniques

 Belle II can access the mass range naturally favored by *light dark sectors*

Early luminosity benchmark:

- → Vector portal:
 - dark photon A', Z' boson
- → Pseudo-scalar portal:

ALPs

Muonic dark forces: L_u-L_t model

- New gauge boson Z' coupling only to the **2**nd and **3**rd generation of leptons (L_µ-L_τ symmetry): $\mathcal{L} = \sum_{\tau} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell$
 - If lighter accessible DM exists, Z' could decay to DM
 - May explain: DM abundance, $(g-2)_{\mu}$ and flavor anomalies $R(K^{(*)})$, $R(D^{(*)})$
- Search for the process:

$$e^+e^- \to \mu^+\mu^- Z'$$

- Existing limits on the Z' coupling (g'):
 - searches for visible decays Z'→µ+µ- (BaBar arXiv:1606.03501, CMS arXiv:1808.03684)
 - neutrino-nucleus scattering processes (*neutrino trident production*, CCFR experiment at Fermilab)
 - → Muonic dark force at BaBar: search on 514 fb⁻¹ for a peak in the dimuon invariant mass distribution in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ processes L.Zani, Z' search at Belle II - 2020/04/20

Search for Z' to invisible

Invisible signature investigated for the first time:

$$e^+e^- \to \mu^+\mu^- Z', Z' \to invisible$$

- Search for a peak in the mass spectrum of the recoil against a $\mu^+\mu^-$ pair in events where NOTHING else is detected.

Shuve et al. [arXiv:1403.2727] Altmannshofer et al. [arXiv:1609.04026]

 $\begin{array}{c} \label{eq:basic} \textbf{Branching ratios:}\\ M_{\mathbf{z}}, < 2 M_{\mu} \rightarrow \Gamma(Z' \rightarrow inv.) = 1\\ 2 M_{\mu} < M_{\mathbf{z}}, < 2 M_{\tau} \rightarrow \Gamma(Z' \rightarrow inv.) \sim 1/2\\ M_{\mathbf{z}}, > 2 M_{\tau} \rightarrow \Gamma(Z' \rightarrow inv.) \sim 1/3 \end{array}$

• If lighter DM is accessible $(m_{\chi} < m_{A'}/2)$, BR $(Z' \rightarrow \chi \overline{\chi}) = 1$ and SM final states are highly suppressed.

L.Zani, Z' search at Belle II - 2020/L., __

Search for LFV Z' to invisible

Invisible signature investigated for the first time:

$$e^+e^- \rightarrow \chi \mu^{e^-} Z', Z' \rightarrow invisible$$

• Search for a peak in the mass spectrum of the recoil against a *electron-muon* pair in events where **NOTHING** else is detected.

Shuve et al. [arXiv:1403.2727] Altmannshofer et al. [arXiv:1609.04026]

 $\label{eq:basic} \begin{array}{|c|c|} \hline \textbf{Branching ratios:} \\ M_{\mathbf{z}}, < 2\,M_{\mu} \rightarrow \Gamma(\mathbf{Z}' \rightarrow \text{inv.}) = 1 \\ 2\,M_{\mu} < M_{\mathbf{z}}, < 2\,M_{\tau} \rightarrow \Gamma(\mathbf{Z}' \rightarrow \text{inv.}) \sim 1/2 \\ M_{\mathbf{z}}, > 2\,M_{\tau} \rightarrow \Gamma(\mathbf{Z}' \rightarrow \text{inv.}) \sim 1/3 \end{array}$

- If lighter DM is accessible $(m_{\chi} < m_{A'}/2)$, BR $(Z' \rightarrow \chi \overline{\chi}) = 1$ and SM final states are highly suppressed.
- Z' could couple to leptons from different generation, allowing lepton flavor violation
- Byproduct of the flavor conserving (*standard*) Z' search
- Explore the invisible signature for the first time

Part II

- Analysis overview
- Signal study
- Background suppression
- Final selection

Why performing this search on Belle II 2018 data:

- No specific need of the vertex detector
- Looking for dimuon(electron-muon) events + missing energy is a model-independent, not yet explored signature
- Even with low statistics, new regions (< 212 MeV/c²) of the Z' parameter space can be investigated

Analysis overview

BLIND ANALYSIS: the recoil mass spectrum has been kept hidden until the finalization of the analysis procedure to prevent any bias in the optimization.

Analysis strategy: reconstruct the *recoil against* two muon tracks in events where nothing else is detected and look for a peak in the **recoil mass** over the expected background.

- 1) Event selection and background suppression: general selections against radiative QED processes + dedicated suppression procedure for $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ events
- **2)Signal study:** extract the width of the simulated signal peak and compare to recoil mass resolution measured on data. Used to define the binning scheme.
- **3)Data validation:** data and simulation are compared, using signal-free control samples to avoid any unintentional *unblinding*
- 4) Detector performance studies: compute efficiencies on data and assign systematic uncertainties

5)Signal yield extraction by applying a Poisson counting experiment technique per each **recoil mass** bin and **upper limits computation** in a Bayesian approach

Data sets

- Simulation (11th Monte Carlo production, MC11):
 - ⁻ optimize the analysis procedure
 - compute signal efficiency and expected yields

Process	$N_{\rm evts} \ [10^6]$	$\int Ldt \; [{\rm fb}^{-1}]$	Reference
$e^+e^- \rightarrow \mu^+\mu^-(\gamma)$	65	56.621	KKMC 80
$e^+e^- \to \tau^+\tau^-(\gamma)$	36.8	40.044	KKMC
$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$	140	7.406	AAFH 83
$e^+e^- \to \pi^+\pi^-(\gamma)$	210	1372.539	PHOKHARA 84
$e^+e^- \rightarrow e^+e^-(\gamma)$	60	0.198	BabaYaga@NLO <u>82</u>
$e^+e^- \rightarrow e^+e^-e^+e^-$	260.6	6.562	AAFH 83

 \rightarrow Standard Z' signal simulated with MadGraph5: 20k events \times 18 mass samples for $m_{Z'}$ in the range [0.5 – 9] GeV/c² with 0.5 mass step

LFV Z' signal simulation not available \rightarrow analysis optimization inherited from standard Z', model independent study on the product of cross section and efficiency ($\sigma \times E$)

- Data: 6th reprocessing of 2018 collision data → usable luminosity for this analysis 276 pb⁻¹ due to trigger conditions
 - validate the analysis procedure
 - measure detector efficiencies and systematic uncertainties
 - extract the final results

Belle II detector during Phase 2

• Only 1/8 of VXD

- KLM firmware issues \rightarrow no dedicated muon identification
- ^P CDC Trigger firmware issues \rightarrow reduce collection efficiency and data quality

Event selection

- Two good tracks coming from the interaction point and satisfying an ECL-based muon identification \rightarrow dimuon candidate
- Tracks pointing to a fiducial ECL barrel region, $37^\circ < \theta_\mu < 120^\circ$, and similarly the recoil momentum
- For μμ events CDC trigger fired in data and mimic the trigger effect in the selection: 2-track opening angle in the range [90°, 172°]

• Clean the *Rest Of Event* (ROE):

 \rightarrow no ECL cluster (clusterE > 100 MeV) within 15° cone with respect to the reconstructed recoil momentum (closest photon veto)

- \rightarrow no reconstructed π^0 candidate (π^0 veto)
- \rightarrow no energy deposited in the ROE >400 MeV (extra energy veto)

L.Zani, Z' search at Belle II - 2020/04/20

 $\begin{array}{l} \mbox{Muon ID:} \\ \mbox{0.15} < \mbox{clusterE} < 0.4 \ \mbox{GeV} \\ \mbox{clusterE/p} < \ 0.4 \end{array}$

Event selection: LFV Z'

- LFV Z' inherits the same selections, replacing a muon with an electron
- For eµ events ECL trigger fired in data and mimic the trigger effect in the selection: ECL cluster energy for electron track >1.5 GeV
- Same vetos (*closest photon*, π^{o} , *extra energy veto*) applied to clean the **Rest Of Event** (**ROE**)

Signal shape study

• Fit the signal recoil mass spectrum (Z' peak, per each generated mass point) on MC simulation after general selections:

Fitting model: Crystal ball shape function (CB) + Gaussian function Extract the signal peak width:

$$\sigma_w = \sqrt{frac \times \sigma_{\rm CB}^2 + (1 - frac) \times \sigma_{\rm Gauss}^2}$$

- Compare the recoil mass resolution between data and simulation on $\mu\mu\gamma$ control samples \rightarrow MC simulation found consistent with data
- Recoil mass resolution used to define the recoil mass windows where to count events (*binning scheme*)

Background rejection

Background from QED processes that can mimic the final state of 2 muons + missing mass because of acceptance or undetected particles:

- $e^+e^-
 ightarrow \mu^+\mu^-(\gamma)$,
- $e^+e^-
 ightarrow \tau^+\tau^-(\gamma)$, $\tau
 ightarrow \mu \nu \nu$
- $e^+e^-
 ightarrow \mu^+\mu^-e^+e^-$

Affects the low mass range M_{rec} < 3 GeV, rejected by general selections
 Dominant contribution in the recoil mass range ~ 3-7 GeV → needs dedicated suppression

- > Affects high mass spectrum $M_{rec} > 7$ GeV where sensitivity is also limited by the decreasing production cross section
- Selections optimization by maximizing the *Punzi figure of merit* in each recoil mass bin.

 $FOM_{Punzi} = \epsilon/(a/2 + \sqrt{B}), a=1.64 (90\% CL)$

 Number of surviving events and signal efficiencies computed for each recoil mass bin Binning scheme:

- I. Contiguous bins have been defined interpolating the fitted σ_{w} to cover all the recoil mass spectrum
- II. Punzi-optimized bin-widths = $\pm 2\sigma_{w}$

T-suppression procedure

• Discriminant variables:

- **p**^{T,max} _{rec}, **p**^{T,min} _{rec}, transverse component of recoil momentum along the direction of the maximum/minimum lepton momentum
- $\mathbf{p}^{\mathsf{T}}_{\mu\mu}$, dimuon candidate transverse momentum
- Optimal selections found by simultaneously maximizing the Punzi FOM
- Interpolated as a function of $\mathrm{M}_{_{\mathrm{rec}}}$
- Achieved rejection factor $(N_{bkg}^{before}/N_{bkg}^{after})$ up to 400; relative efficiencies ~40-70%

 Z' is *final state radiation* from one muon leg, missing momentum in ττ events is due to neutrinos from both muons

Final selection results

Part III

- Data validation
- Systematic uncertainty evaluation

Data validation: overview

- Impact of the selections studied on signal-free control samples in data and MC:
- 1) ee sample: Bhabha events, $\tau\tau~(\tau \rightarrow$ e) pairs
 - check τ pair background (3 < $M_{_{rec}}$ < 7 GeV)
 - assign a systematic for the τ suppression procedure
- 2) µµγ, eeγ, eµγ samples: radiative dilepton events
 - check low recoil mass region, $\rm M_{\rm rec} < 3~GeV$
 - validate the trigger by using the complementary ECL line (> 1 GeV energy deposit)

- analogous to the background expected for unblinded samples
- assign a systematic uncertainty on the expected background level

→ unintentional unblinding avoided by explicitly asking for a reconstructed photon

Data validation: results

- Observed data-MC discrepancy of -35% in $\mu\mu$ events (standard Z'), -10% in e μ events (LFV Z');
- 10% data-MC difference understood and assigned to track finding performances;
- For $\mu\mu$ events, residual –25% data-MC mismatch unexplained.

* Scale the MC simulations by 0.65 for $\mu\mu$ events and 0.90 for $e\mu$ events

Detector performance studies

• Real detector != simulated detector

 \rightarrow GOAL: Estimate the **discrepancy** in detector efficiencies and resolutions between data and simulation, and based on this measurement:

> correct for additional inefficiencies observed in data or not simulated detector effects

> assign a systematic uncertainty

...for the Z' analysis, three main contributions affect the selection efficiency:

- Trigger selection
- Track reconstruction efficiency
- Particle identification selection

 \rightarrow Phase 2 data mainly exploited to understand a new detector at a new machine

 \rightarrow Wide program of performance studies in parallel to the analysis effort

Systematic uncertainties

• List of systematic uncertainties entering the cross section measurement for the $\mu\mu$ and $e\mu$ channels respectively:

Source	Affected quantity	$\mu\mu$	$e\mu$
Trigger efficiency	ϵ_{sig}	6%	1%
Tracking efficiency	ϵ_{sig}	4%	4%
PID	ϵ_{sig}	4%	4%
Luminosity	L^{-}	0.7%	0.7%
τ suppression (background)	B_{exp}	22%	22%
Background before τ suppression	B_{exp}	2%	2%
Discrepancy in $\mu\mu$ yield (signal)	ϵ_{sig}	12.5%	
		<u></u>	

 Conservatively assign half of the measured data-MC discrepancy due to an unknown source (→ ±12.5%) as systematic uncertainty in the signal efficiency.

$$\sigma_{Z'} = \frac{N_{\rm obs} - B_{\rm exp}}{L \times \epsilon_{\rm sig}}$$

Trigger, Tracking and Particle ID: from performance studies

- from offline luminosity measurement [arXiv:1910.05365]
- τ-suppression: from validation on ee sample (statistically dominated)
- Background yields: from data-MC agreement in control samples with reversed τ-suppression selection

Part IV

- Upper limit computation
- Phase 2 results
- Summary and outlook

L.Zani, Z' search at Belle II - 2020/04/20

Upper limit computation

- Signal yields extracted by applying a Poisson counting experiment technique, in each recoil mass bin, after the final selections
- Upper limits on the cross-section $\sigma_{Z^{\prime}}$ are computed in a Bayesian approach

ightarrow after T-suppression, expected events scaled to data luminosity < 1 ightarrow too low statistics to fit the recoil mass distribution

 $\sigma_{Z'} = \frac{N_{\rm obs} - B_{\rm exp}}{L \times \epsilon}$

Upper limit computation in the Bayesian approach

(BAT software framework: https://doi.org/10.1016/j.cpc.2009.06.026)

- N_{obs} , B_{exp} : Poissonian likelihood
- Prior distribution for Z' cross section: positive, flatly distributed in $0-10^5$ fb
- Systematic uncertainties: modeled with Gaussian functions with width equal to the size of the estimated effect
 - \rightarrow integrate over nuisance parameter priors (*marginalization*)
 - \rightarrow integrate the likelihood until the value of the integral reaches the wanted credibility level (0.90)

Results on Phase 2 data

 \rightarrow µµ (eµ) expected yields scaled for the measured trigger efficiency of 0.79(0.96) and data/MC ratio of 0.65(0.90) from validation studies

Phys. Rev. Lett. 124, 141801 – Published 6 April 2020

Upper limits: results

First upper limits on the cross section for the processes e⁺e⁻ → µ⁺µ⁻ + missing energy and first model-independent constrain on the product of (efficiency × cross section) for the process e⁺e⁻ → e⁺µ⁻ + missing energy

Phys. Rev. Lett. 124, 141801 – Published 6 April 2020

First invisible Z' upper limits

Upper limits on the cross section for the processes e⁺e⁻ → μ⁺μ⁻ + missing energy translated in terms of invisible Z' coupling constant g' (using MadGraph5 for numerical computation)

Already with few statistics a new region of the Z' parameter space (L_μ-L_τ model) can be explored
 → never reached before by visible searches (M_z, < 212 MeV)

L.Zani, Z' search at Belle II - 2020/04/20

Summary

• This search is the first physics result from the Belle II experiment

PHYSICAL REVIEW LETTERS 124, 141801 (2020)	K			
Editors' Suggestion Featured in Physics				
	Belle II			
Search for an Invisibly Decaying Z' Boson at Belle II in $e^+e^- \rightarrow \mu^+\mu^-(e^\pm\mu^{\mp})$ Plus Missing Energy Final States				

 \rightarrow First upper limits on the production cross section for processes $e^+e^- \rightarrow \mu^+\mu^-(e^+\mu^-) + missing energy$ are measured

 \rightarrow First upper limit on Z' coupling constant g' within the $L_{\mu}\text{-}L_{\tau}$ model below the dimoun invariant mass threshold

Results on 2018 data are mostly limited by the low statistics and the performances of the Phase 2 detector.

Phase 3 has started \rightarrow larger statistics and better data quality are coming...

Outlook

Phase 3 prospects

- Luminosity increase (in 2020 collected > 13/fb ... x40 Phase 2 data set)
- Complete detector installed
- Solved firmware issues
 - ightarrow improved data quality
 - \rightarrow improved data-MC agreement, reduced systematic uncertainties

The unprecedented statistics of the full Belle II data set will allow to pursue a rich program in flavor physics as well as in dark sector searches (Z' parameter space fully explored, dark photons, ALPs and much more on *The Belle II Physics Book, arXiv:1808.10567*)

Thanks for your attention.

Backup

My contributions

- The analysis effort has been shared with the Z' analysis group which includes master and PhD students and dark sector experts among the Belle II members.
- Being one of the 2 PhD students that has developed this search as thesis project, I have been working on almost all the analysis steps:
 - 1) Event reconstruction, general selections and *ntuple* production
 - 2) Study of the discriminant variable (comparing signal and background distributions for different variables)
 - 3) Validation procedure: control sample selection, comparison between data and simulation, results
 - 4) Trigger validation on radiative dilepton samples

 \rightarrow For the detector performance studies, I have been the main author of the measurement of the track reconstruction efficiency discrepancy between data and simulation, on τ pair events

 \rightarrow I am working at the Phase 3 analysis preparation, devising the new background yields estimation directly from data (*sideband extrapolation technique*)

 \rightarrow I am working at track reconstruction efficiency study also on early Phase 3 data

Standard model and beyond

• The Standard Model (SM) of elementary particles successfully describes the matter content of our Universe and its interactions:

- BUT it is still an incomplete theory, leaving many open issues unexplained:
 - Gravity not included
 - Neutrino masses
 - [–] Baryon-antibaryon asymmetry
 - Mass hierarchy problem
 - 23% of Universe matter seems not to interact with SM particles if not gravitationally, hence being *dark*

Searching for physics beyond the SM is a well motivated effort.

Dark matter puzzle

- DM origin and nature is still unknown:
 - I. Modified Newtonian Gravity
 - II. Something completely different and unexpected (not-particle DM candidates)
 - → Massive Astrophysical Compact Halo Objects (*MACHOs*): highly condensed object as neutron stars, brown and white dwarfs, **primordial black holes** [arXiv:1906.05950]
 - III. Exotic subatomic candidates: similarly to the SM, rich *dark sectors* with new particles content may exist.

Thermal relic density: freeze out mechanism

In the early universe SM particles are in equilibrium with DM

- As the universe expands, the DM number density is exponentially suppressed → no more DM annihilations are possible
- DM abundance is frozen at the **relic density**:

Thermal DM $<\sigma v > = 10^{-26} \text{ cm}^3\text{s}^{-1}$

Dark matter candidates

Prerequisites:

- Provide the right *relic density*
- Average velocity of a self-gravitating sphere <v>~ 235 km/s (assumed Boltzmann distribution)
- Cold, non-relativistic candidate
- Stable on a cosmological time-scale
- Only very weakly interactions (*dark*)

- Neutrinos: relativistic (hot) candidates
- Sterile Neutrinos: cold DM that may explain the neutrino masses problem
- Weakly Interacting Massive Particles (WIMPs): match new particle candidates from supersymmetric models (*neutralino*)
- QCD Axions: Peccei-Quinn solution to QCD fine-tuning problem

Dark matter production at accelerators

- Fixed-target experiment
 - Electron beam dump

Proton beam dump (DM at neutrino facilities)

• Colliders

Dark matter searches at fixed-target

• Electron beam dump

- $^-$ Suitable to investigate vector portals for mediator masses $2m_{e}{<}~m_{A'}{<}{\rm GeV}$
- Larger luminosity
- Scattering cross section enhanced by nuclear charge coherence
- Compact special-purpose detectors (dual-arms spectrometer @JLAB, MAMI, forward vertexing spectrometer @HPS)

• Proton beam dump: exploiting neutrino facilities

- Exploit existing neutrino facilities
- Look for neutral pion conversions to photons that may kinetically mix with the dark photon
- Signal signature: dilepton resonances, long-lived particle, missing energy

Neutrino trident production

• Neutrino trident production with a Z' boson

Cross section in e⁺e⁻ collision at 10.58 GeV

Physics process	Cross section [nb]	Selection Criteria	Reference
$\Upsilon(4S)$	1.110 ± 0.008	<u></u>	[2]
$uar{u}(\gamma)$	1.61	-	KKMC
$dar{d}(\gamma)$	0.40	-	KKMC
$sar{s}(\gamma)$	0.38	-	KKMC
$car{c}(\gamma)$	1.30	in.	KKMC
$e^+e^-(\gamma)$	$300\pm3~({\rm MC~stat.})$	$10^\circ < \theta_e^* < 170^\circ,$	BABAYAGA.NLO
		$E_e^* > 0.15{\rm GeV}$	
$e^+e^-(\gamma)$	74.4	$p_e > 0.5 \mathrm{GeV}/c$ and e in	-
		ECL	
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC\ stat.})$	$10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$	BABAYAGA.NLO
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$	
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 \text{GeV}$ in ECL	-
$\mu^+\mu^-(\gamma)$	1.148	-	KKMC
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	-
		$\geq 1 \gamma \ (E_{\gamma} > 0.5 \text{GeV})$ in ECL	
$\tau^+\tau^-(\gamma)$	0.919	85 1=0	KKMC
$ uar{ u}(\gamma)$	0.25×10^{-3}	-	KKMC
$e^+e^-e^+e^-$	$39.7\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5{\rm GeV}/c^2$	AAFH
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~({\rm MC~stat.})$	$W_{\ell\ell} > 0.5 {\rm GeV}/c^2$	AAFH

The Belle II Physics Book [arXiv:1808.10567]

- Low multiplicity event cross sections rapidly diverge compared to hadronic ones
- Selections applied at MC generator level to reduce the effective cross section (acceptance, particle momentum selections)
- W_{\parallel} is the minimum invariant secondary fermion pair mass

SuperKEKB Numbers

2017/September/1	LER	HER	unit	
Е	4.000	7.007	GeV	
	3.6	2.6	А	
Number of bunches	2,500			
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σ_{δ}	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξ×/ξγ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x10 ³⁵		cm ⁻² s ⁻¹	

World highest luminosity with nano beams

Belle II Challenges

- Reduced boost $\beta\gamma$ =0.42@KEKB $\rightarrow \beta\gamma$ =0.28@SuperKEKB requires better vertex resolution for the same B mixing performance
- Much higher backgrounds require faster electronics and radiation hardness
- Much higher event rates require new DAQ and multi-level trigger system
- Much higher data rates require new software and computing design

Belle II Performances in Phase 2

Belle II Performances in Phase 2: photon

Belle II Phase 3 snapshot

Vector portal: dark photons

- Dark sectors are more generic than light DM and a priori unconstrained in their structure
- Common to assume U(1) gauge group with an associated spin-1 massive boson A' \rightarrow the *dark photon*
- Interaction with the SM particles are mediated by the *kinetic mixing* with the SM photon with a strength ϵ : $\mathscr{L}_{A',\gamma} = \frac{\epsilon}{2} B_{\mu\nu} F'^{\mu\nu}$

Analysis optimization

Figure 4.12: Background rejection factor defined as the bin by bin ratio in the recoil mass spectrum of the number of events before and after the τ suppression procedure only (left). Punzi FOM as a function of the recoil mass after the optimization process (right).

-0----

8

10

Data validation: results

- Observed data-MC discrepancy of -35% in $\mu\mu$ events (standard Z'), -10% in e μ events (LFV Z')
- * 10% data-MC difference understood
- For $\mu\mu$ events, residual –25% data-MC mismatch unexplained

Investigation effort on dimuon yield mismatch:

- $^{\prime}$ All checked distributions show flat data/MC \sim 0.65
- ^r Shape distortion in azimuth angle (ϕ) distributions for $\mu\mu$ events and ascribed to the effect of CDC trigger selection
- ^r 35% discrepancy persists in μμγ sample selected with ECL trigger and with different MC generators (KKMC, BagaYaga@NLO)

NO clear hint for a culprit \rightarrow CDC trigger seems to be the most suspicious candidate.

* Scale the MC simulations by **0.90 for e\mu events** and **0.65 for \mu\mu events**

Trigger efficiency

- Two orthogonal trigger lines:
 - [–] CDC two-track trigger for $\mu\mu$ events (standard Z'): Bhabha veto and at least 2 tracks within CDC acceptance, with opening angle > 90°

 $\epsilon_{CDC} = \frac{N(\text{bit}_{\text{CDC}} \text{ AND bit}_{\text{ECL}})}{N(\text{bit}_{\text{ECL}})}$

 ECL trigger for eµ events (LFV Z'):
 Bhabha veto and minimum energy deposit of 1 GeV

$$\epsilon_{ECL} = \frac{N(\text{bit}_{\text{CDC}} \text{ AND bit}_{\text{ECL}})}{N(\text{bit}_{\text{CDC}})}$$

• Select good runs ($\mathcal{E}_{CDC} > 50\%$) and CDC fiducial regions in bins of polar angle and momentum and compute final trigger efficiency of 79% as:

$$\epsilon_{CDC} = \frac{\sum_{i} \epsilon_{i}^{\text{bit}_{\text{CDC}}} \times \mathcal{L}_{i}}{\sum_{i} \mathcal{L}_{i}}$$

Systematic uncertainty is evaluated as the relative variation of average efficiency in bins of θ, pT, #CDChits: 6%
 → ε_{CDC} = (79 ± 6)%

Used to scale expected

- bkg MC yields
 - Validated with the CDC trigger (assume same good runs luminosity of 276 pb⁻¹) on μμγ events
 - Found to be flat in the fiducial ECL barrel region $\rightarrow \mathbf{E}_{\text{ECL}} = (96 \pm 1)\%$

Track reconstruction efficiency

 $\sigma_{_{\tau\tau}}~(10.58~\text{GeV})\sim 0.9~\text{nb} \rightarrow (\text{xBF})$ 50k evt

Tag & probe method on $e^+e^- \rightarrow \tau\tau \rightarrow (1 + \nu \overline{\nu}) (3\pi^{\pm} + \nu + n\pi^0)$

(BaBar, arXiv:1207.2849)

TAG: one isolated *good* track consistent with a *electron/muon* hypothesis (*1-prong side*) + two *good* hadronic tracks on the opposite side (*2-prong side*), satisfying $\Sigma q = \pm 1$

PROBE: 4th track in the event, satisfying loose selection requirement and $\Sigma q=0$.

Phase 2 data, 381 pb⁻¹ due to trigger conditions (ECL trigger to provide unbiased samples)

- Count the number of events with the probe track (N4) and without (N3)
- Compute $\mathcal{E} \cdot \mathbf{A} = \mathbf{N4}/(\mathbf{N4} + \mathbf{N3})$ in data and simulation and estimate the calibrated discrepancy δ :

$$1/k \cdot \left(1 - \frac{\epsilon_{meas}^{Data}}{\epsilon_{meas}^{MC}}\right)$$

 τ^{\pm}

Phase 2 results

 Recoil mass spectra before the τ-suppression procedure, 0.75 scale factor applied to simulation yields in μμ events to match the measured data/MC ratio:

Phase 3 improvements

- The full VXD will improve the recoil mass resolution (~40%) \rightarrow reduce mass windows and surviving background
- Muon detection improved thanks to KLM performances

