FCC Detectors

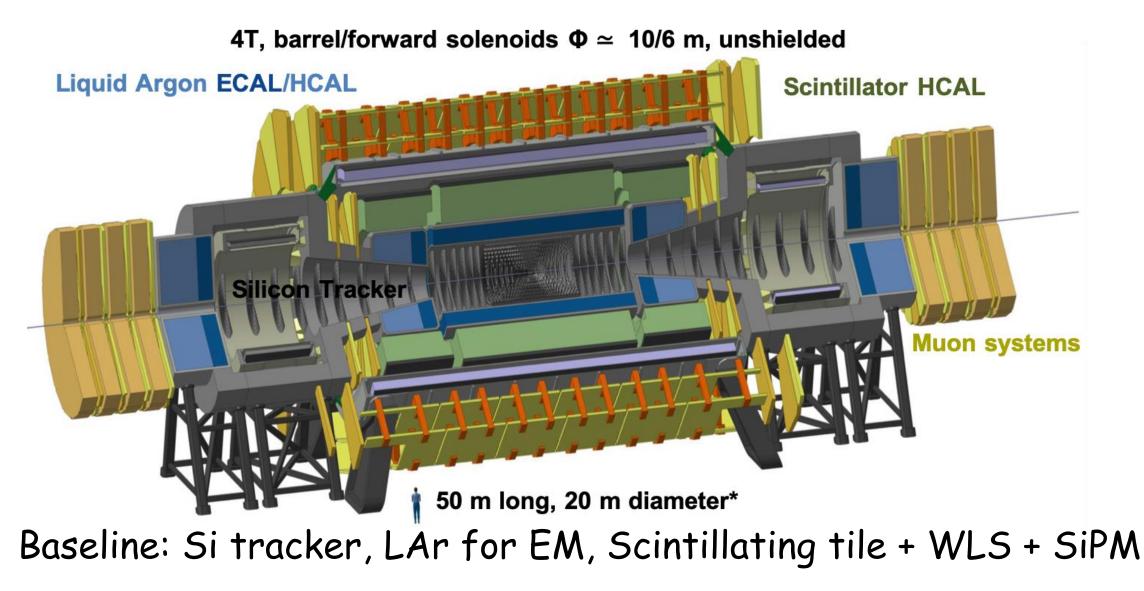
Luc Poggioli

- FCC-hh
- FCC-ee
- R&D
- Next

FCC-hh

From HL-LHC to FCC-hh

• FCC-hh vs HL-LHC (most parameters x 10-100)


	pp rate GHz	PU	Track density GHz/cm ⁻²	Neutron fluence 10 ¹⁶ cm ⁻²	lonizing dose MGy		W kHz	Z kHz	tt kHz	∆(2 vtx) mm	L1 R/O 40MHz TB/s
FCC-hh	31	1000	10	80	300	105	400	120	11	0.12	200
HL-LHC	4	200	0.7	4	13	1	15	3	0.05	1	25

Constraints

- Physics boost -> increase in rapidity acceptance by >1 unit
- Radiation resistance
- Pile-up -> Granularity (calorimeter, tracker), timing
- R&D
 - Ultra-rad hard Si sensors dvt, low power rad hard optical links,

high granularity LAr calorimetry, high precision timing detectors

FCC-hh Detectors (Baseline) CDR

FCC-ee

Constraints & challenges

- Constraints
 - Very large statistics -> need small systematics (10⁻⁵) to match
 - Events rates ->100 KHz, Bunch spacing ~ 20 ns / NO power pulsing
 - Complex interaction region -> MDI design crucial
- Challenges
 - Rare processes \rightarrow acceptance closure, sensitivity to displaced vtx
 - Luminosity measurement at 10⁻⁵ (rel), 10⁻⁴ (abs)
 - Acceptance definition at $\,\leq 10^{-5}$
 - Optimal b/c/gluon separation
 - PID
 - Determination of point-to-point scan energies at 10 keV level

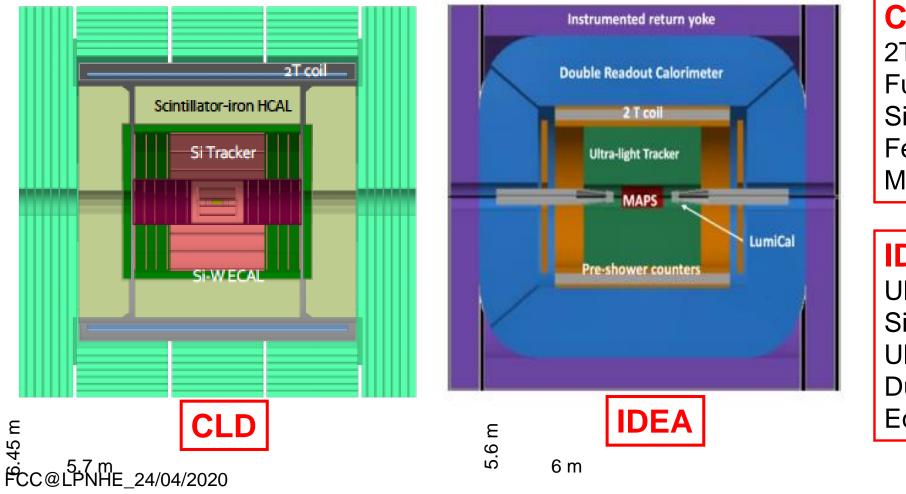
FCC@LPNHE_24/04/2020

In detail (1)

- Detector acceptance
 - Essential for R_{lep} & leptonic x-section measurements
 - Systematic errors ~2-3 10⁻⁶
 - To be defined with precision linked to lepton angular acceptance
 - For acceptance limit at 15 degrees -> angle known with 3.5 μrad precision
 - Hermitic detector, ie no cracks
- Luminosity measurement (For Z run especially)
 - Inner limit of detector acceptance know to $1\mu\text{m}$ @ 1m from IP
- Stability of momentum measurement (for Z run especially)
 - Affects mass, width, assymmetries, WW threshold
 - Magnetic field in tracker to be stable, or monitored, at O(10-6)

A. Blondel

In detail (2)


- b/c/gluon separation
 - Essential for flavor physics, Higgs & Top
 - Powerful vertex detector essential (beam pipe diameter 2cm)
- Particle Identification
 - Critical for flavor physics
 - Should cover sub-GeV (TOF) up to ~50 GeV (Cerenkov, dE/dx)
 - $\cdot \pi/K/p$ separation over the full kinematical range
 - Electron/muon up to 45 GeV
- Electromagnetic energy resolution
 - Crucial for flavor physics $3\%/E^{1/2}$
 - Limits strongly the technology available (ie Crystals)

A. Blondel

FCC-ee Detectors

Two integration, performance and cost estimates

- CLD Linear Collider Detector group at CERN -> adaption of CLIC-SID detector for FCC-ee
- IDEA, detector specifically designed for FCC-ee (and CePC)

CLD

2T Coil outside Calo Full Si tracker Si/W HG EM calorimeter Fe/Scint. HG HAD calorimeter Muon detector with RPC

CDR

IDEA

Ultra-thin Coil inside Calo Si vertex ALICE MAPS Ultra-light drif chamber MEG2 Dual readout calorimeter Equipped return yoke

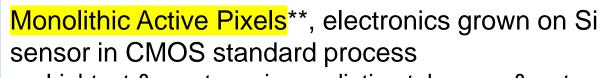
Si for tracking/vertexing (1)

• eg CLD full Si

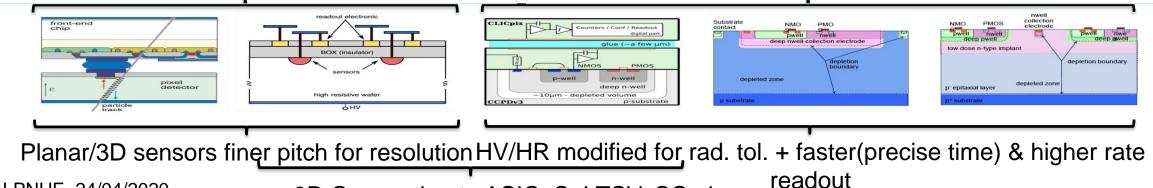
See Giovanni's talk

D. Contardo

CLD vertex: 3 double layers 0.6% X/X₀ at 17, 37, 57 mm, 3 µm hit resolution


CLD tracker: Si 3/7 layers/disks (inner) + 3/4 layers/disks (outer) (12-40-70-100-160-210 cm)

• Hit resolution 1st layer 5 μ m x 5 μ m, next layers 7 μ m x 90 μ m, 1-1.5% X/X₀ per layer


Technologies

Hybrid design, high depletion voltage planar or 3D Si-sensors, bump(wire) bonded to ASIC

- Most radiation tolerant , high rate capabilities
- - $\simeq 2 \times 10^{16} \text{ neq/cm}^2$, sensors
 - \simeq 0.5-1 Grad, 3 GHz/cm² TSMC 65 nm ASIC

- Lightest & most precise, radiation tolerance & rates limited
- ALICE ITS2, Belle-II
 - $\simeq 5 \ \mu m$ resolution, $\simeq 0.3\% \ X_0$ /inner layer
 - $\simeq 2 \times 10^{13}$ neq/cm² and $\simeq 3 \text{ MRad}$
 - Binary readout sparsified, \simeq 5 µs integration time

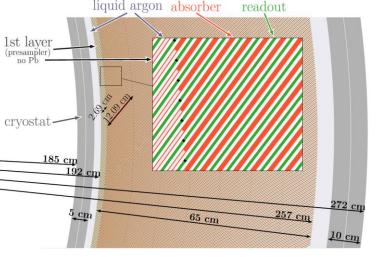
FCC@LPNHE_24/04/2020

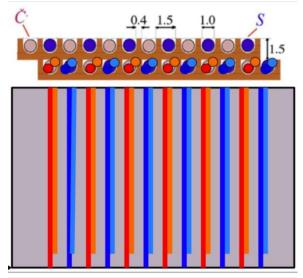
3D Connection to ASIC, Sol TSV, CC glue

10/17

Si for tracking/vertexing (2) D. Contardo

- FCC-ee needs can be fulfilled with relatively standard MAPs and some work on hit resolution
 - Other recent progress may also be beneficial
 - Cylindrical mechanical designs -> further reduce material
- FCC-hh, -> deeper submicron technologies & 3D integration relevant steps wrt increased rates and radiation tolerance
 - Planar/3D high depletion voltage sensors remain best option at this stage (still far from ultimate needs)
- Developments
 - To achieve best hit resolution, lowest X/X_0 and power consumption

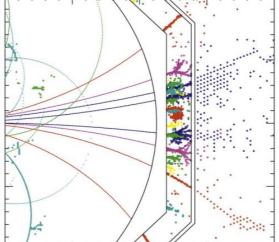

Calorimetry (1)


 R&D for future high-granularity noble liquid calorimetry (eg LAr) (LAL, CPPM, LAPP, OMEGA)

- EM part only

Finer lateral and longitudinal granularity than ATLAS (x10)

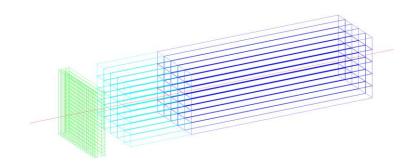
- 8 longitudinal layers
- → 2.5 M readout channels
- → Possible thanks to straight multilayer electrodes (PCBs, 7 layers, 1.2 mm thick)
- Works for ee and hh
- DREAM/RD52 concept for IDEA: Dual readout
 - Both Electromagnetic AND hadronic
 - Energy response compensation measuring EM and HAD shower components in Cherenkov and scintillating fibers
 - Under study: Longitudinal segmentation


M. Aleksa, D. Contardo

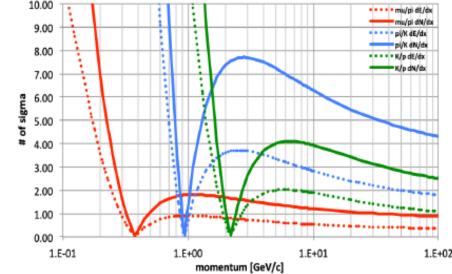
Calorimetry (2)

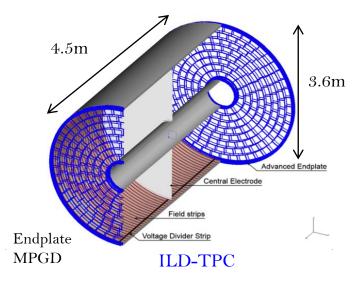
- R&D for imaging calorimetry: CALICE
 - Fine grained calorimeter segmentation optimized for optimal performance of particle flow identification and energy resolution
 - Large French involvement See Rémi's talk
 - Si/W base for EM

Cf. CMS Endcap upgrade


•					
ILD HGC configuration	Electromagnetic section	Hadronic section options			
Active Layer/Absorber	Si / W	Scint. tile + SiPM /Steel	Glass RPC / Steel		
Number of layers	30	48	48		
Cell size (cm x cm)	0.5 x 0.5	3 x 3	1 x 1		
Readout	analog	analog	semi-digital		
Depth number of X ⁰ /A ^{int}	24 Xº	5 Λ ^{int}	5 Aint		
Number of channels (x10 ^b)	100	8	70		
Total area	2500	7000	7000		

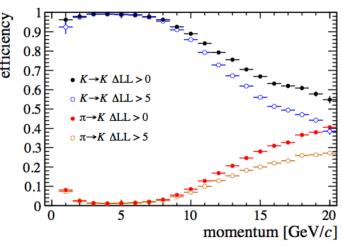
P.Allport, D.Contardo

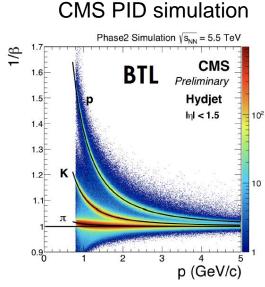

- For Hadronic calorimetry
 - Scintillating tiles/Fe à la ATLAS (with SiPM)
 - Also RPC/Fe
- Crystals
 - A la CMS. For ultimate energy resolution
 - Longitudinal segmentation under R&D


FCC@LPNHE_24/04/2020

Gaseous detectors for tracking

- IDEA Drift chamber
 - In operation in KLOE-2 & Belle-2, most recent design for MEG-II
 - Size & #layers challenging ($\simeq x$ 2 Belle-2)
- PID with 'cluster counting'
 - Classical dE/dx limited to low momentum
- TPC (Cf. ALICE upgrade)
 - Large proto for ILD@ILC
 - $\boldsymbol{\cdot}$ Needs adaptation for FCC environment
 - Readout studies with GEM/MicroMegas (MPGD: Micro-Pattern Gaseous Detectors)
- Ion Backflow critical





PID (Cherenkov, Scint, Si) G.Wilkinson, D.Contardo

- DIRC (BaBar) / TOP counter (Belle II) / TORCH-like (LHCb)
 - Limited to lower momenta
 - Use Time Of Propagation
 - At FCC-ee radius photosensor -> resolution from \simeq 30 ps to \simeq 20 ps to get TORCH resolution
- Time Of Flight
 - Dvts for HL-LHC (ATLAS HGTD) & CMS (PID)
 - Time resolution \simeq 30 ps with thin devices
 - →Can cover efficiency dip in dE/dx ID (eg coverage of up to few GeV today)
 - Other technologies than Si under study

FCC@LPNHE_24,64,2021 lator, Multigap RPCs, ...

Last points

- Today: more emphasis on ee (Timescale wrt hh)
- Some technologies OK for ee & hh
 - LAr calorimetry, TOF, Si tracking
- Real challenge for detectors
 - hh: Obvious (Cf. LHC, HL-LHC)
 - ee: Far from trivial!!! (current prejudice)
- Benchmarks (1-2yrs)
 - Physics processes -> Simulation -> detectors specifications
- ILC/CLIC/FCC collaboration possible for detectors
 - eg W/Si calorimetry, Si tracking

• But FCC-hh might need dedicated R&D, eg LAr calorimetry 16/1

Summary

- FCC-ee & hh proto detectors do exist
 - Precisions required for ee expts apply to FCC-hh both for measurements & pile-up effect mitigation
 - Synergies & benefit in developments can go both ways, but ee should exploit advantage of low rates and irradiation to reach ultimate performance
- Labo expertise
 - LAr
 - Si tracking
 - Si calorimetry
 - Timing detectors