Possible QCD Studies @ FCCee (selected appetizers)

Bogdan MALAESCU

LPNHE, CNRS

24/04/2020

Comparison of LHC / FCCee "environments"

@ FCCee:

→ Short distance interaction of virtual bosons with quarks

→ No PDFs

→ No underlying event & MPI

→ No pile-up

Jet substructure opportunities

→ Numerous algorithms/methods developed for studying into detail the jet substructure in the LHC environment:

Important for understanding QCD effects inside jets, jet tagging (e.g. boosted top, $H \rightarrow bb$), New Physics searches

→Huge potential for doing precision studies of jet substructure in the clean FCCee environment

→ Need to perform detector optimization in terms of granularity, energy resolution, (tracking/calorimeter) acceptance

$\alpha_{\rm S}$ evaluation from *hadronic* τ *decays* (1/3)

 $\rightarrow \tau$ hadronic spectral functions from ALEPH, unfolded of detector effects

$\alpha_{\rm S}$ evaluation from *hadronic* τ *decays* (2/3)

 $\rightarrow \tau$ hadronic spectral functions ($\pi\pi^0$ channel) from various experiments 0.3 Exp/Combined -CLEO ALEPH 0.2 Exp/Combined 0.2 Combined (A-C-O-B) Combined (A-C-O-B) 0.1 0.1 0 0 -0.1 -0.1 arXiv:1312.1501 -0.2 -0.2 -0.3 -0.3 0.2 0.2 0.4 0.6 0.8 0.4 0.6 0.8 1.2 1.2 $s(\pi\pi^{0})$ (GeV²) $s(\pi\pi^0)$ (GeV²) 0.3 0.3 Exp/Combined - 1 Exp/Combined -OPAL Belle 0.2 0.2 Combined Combined (A-C-O-B) (A-C-O-B) 0.1 0.1 0 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.2 $s(\pi\pi^0)$ (GeV²) $s(\pi\pi^{0})$ (GeV²)

- Normalisation from branching fractions best determined by ALEPH (due to the large boost)
- → Shape of the distribution best determined by Belle (high statistics)
 → What precision can one achieve at FCCee?

$\alpha_{\rm S}$ evaluation from *hadronic* τ *decays* (3/3)

- → Theoretical prediction available at N³LO: can hope for even higher precision at the time of FCCee
- → Need to study acceptance, reconstruction efficiency, resolution etc. in view of optimizing the detector design for SF measurements

 $\alpha_{\rm S}$ evaluation from *hadronic Z decays*

- \rightarrow Theoretical prediction available at N³LO
- → Better convergence of the perturbative series and less non-perturbative corrections compared to precise determinations at lower scales (e.g. from τ decays)

low O^2 cont. (N³LO) DIS jets (NLO) 0.3 Heavy Quarkonia (NLO) e⁺e⁻ jets/shapes (NNLO+res) +*+ pp/pp (jets NLO) 0.25 EW precision fit (N³LO) pp (top, NNLO) $\alpha_s(\boldsymbol{Q}^2)$ 0.2 PDG 2019 0.15 \rightarrow Used for "reference value":determinations at other energies 0.1 evolved at the m_7 scale and then $\equiv \alpha_{s}(M_{Z}^{2}) = 0.1179 \pm 0.0010$ compared to test the RGE from QCD 0.05 10 100 1000 Q [GeV]

→ Need to study acceptance and reconstruction efficiency etc. in view of optimizing the detector design

$\alpha_{\rm S}$ evaluation from (ISR) jet production

 \rightarrow Sensitivity to α_{s} e.g. from 3/2 jet ratios

- → High luminosity allows to select large samples of events with collinear / large angle ISR photons: allows to scan √s' with the same detector and collider conditions – important for RGE test
- → Need to study jet and photon energy calibration and resolution, acceptance and reconstruction efficiency etc. in view of optimizing the detector design

Ultimate goal: test RGE & unification of couplings

1/α(Q)

- A deviation from the SM prediction for the RGE can be an indication of New Physics
- → Are the coupling constants unified at the Plank scale?
- → Need to evaluate the strong coupling at multiple scales, with high precision

