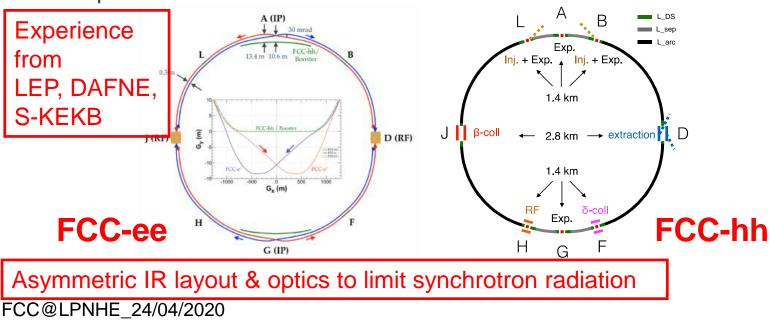
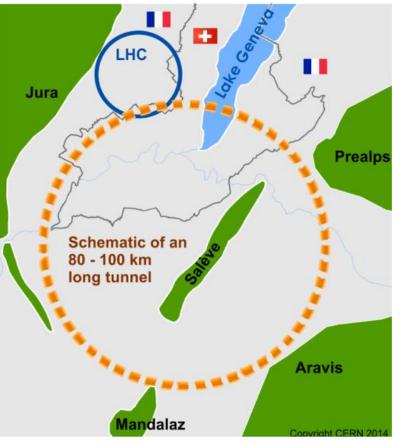
The FCC Project

Luc Poggioli

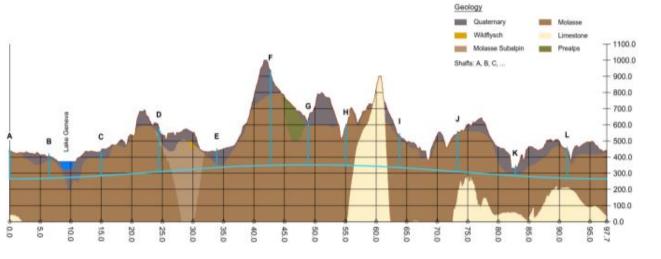
- Project
- Physics reach
- Challenges
- Ongoing
- Next

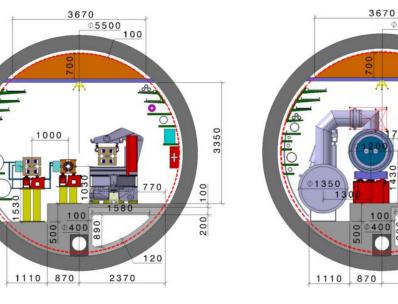

The FCC integrated program

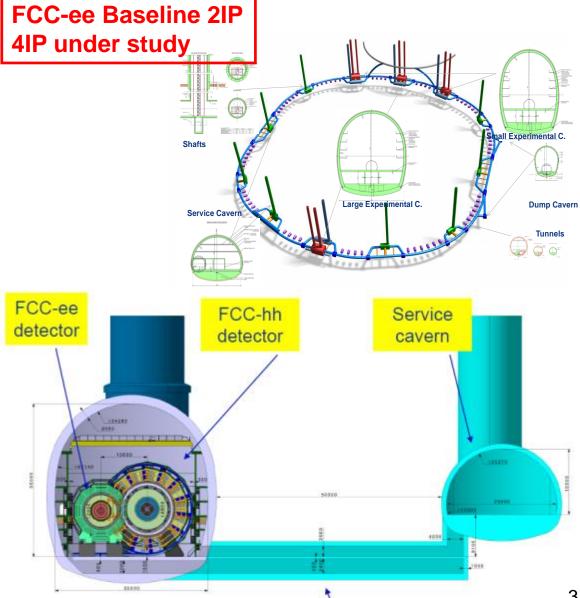

M. Benedikt

inspired by successful LEP – LHC programs at CERN

Comprehensive cost-effective program maximizing physics opportunities


- Stage 1: FCC-ee (Z, W, H, tt) as first generation Higgs factory, EW and top factory at highest luminosities.
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options.
- Complementary physics
- Integrating an ambitious high-field magnet R&D program
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure.
- FCC integrated project plan is fully integrated with HL-LHC exploitation and provides for seamless continuation of HEP.




FCC@LPNHE_24/04/2020

Implementation

Ø5500

M. Benedikt

3/12

FCC-ee discovery potential & more

A. Blondel

Today we do not know how nature will surprise us. A few things that FCC-ee could discover :

EXPLORE 10-100 TeV energy scale (and beyond) with Precision Measurements -- ~20-100 fold improved precision on many EW quantities (equiv. to factor 5-10 in mass) m_z, m_w, m_{top}, sin² θ_w^{eff}, R_b, α_{QED} (m_z) α_s (m_z m_w m_τ), Higgs and top quark couplings model independent «fixed candle» for Higgs measurements

DISCOVER a violation of flavour conservation or universality and unitarity of PMNS @10⁻⁵ -- ex FCNC (Z --> μτ, eτ) in 5 10¹² Z decays and τ BR in 2 10¹¹ Z→ τ τ + flavour physics (10¹² bb events) (B→s τ τ etc..)

DISCOVER dark matter as «invisible decay» of H or Z (or in LHC loopholes)

DISCOVER very weakly coupled particle in 5-100 GeV energy scale such as: Right-Handed neutrinos, Dark Photons, ALPS, etc...

+ and many opportunities in – e.g. QCD ($\alpha_s @ 10^{-4}$, fragementations, H \rightarrow gg) etc....

NB Not only a «Higgs Factory»! «Z factory» and «top» are important for 'discovery potential' FCC@LPNHE_24/04/2020 4/12

FCC-hh discovery potential & more

FCC-hh is a HUGE discovery machine (if nature ...), but not only.

FCC-hh physics is dominated by three features:

 Highest center of mass energy –> a big step in high mass reach! ex: strongly coupled new particle up to >30 TeV Excited quarks, Z', W', up to ~tens of TeV <u>Give the final word on natural Supersymmetry, and WIMPS</u> extra Higgs etc.. reach up to 5-20 TeV Sensitivity to high energy phenomena in e.g. WW scattering

-- HUGE production rates for single and multiple production of SM bosons (H,W,Z) and quarks

- -- Higgs precision tests using ratios to e.g. γγ/μμ/ ττ/ZZ, ttH/ttZ @<% level
- -- Precise determination of triple Higgs coupling (~2% stat. level) and quartic Higgs

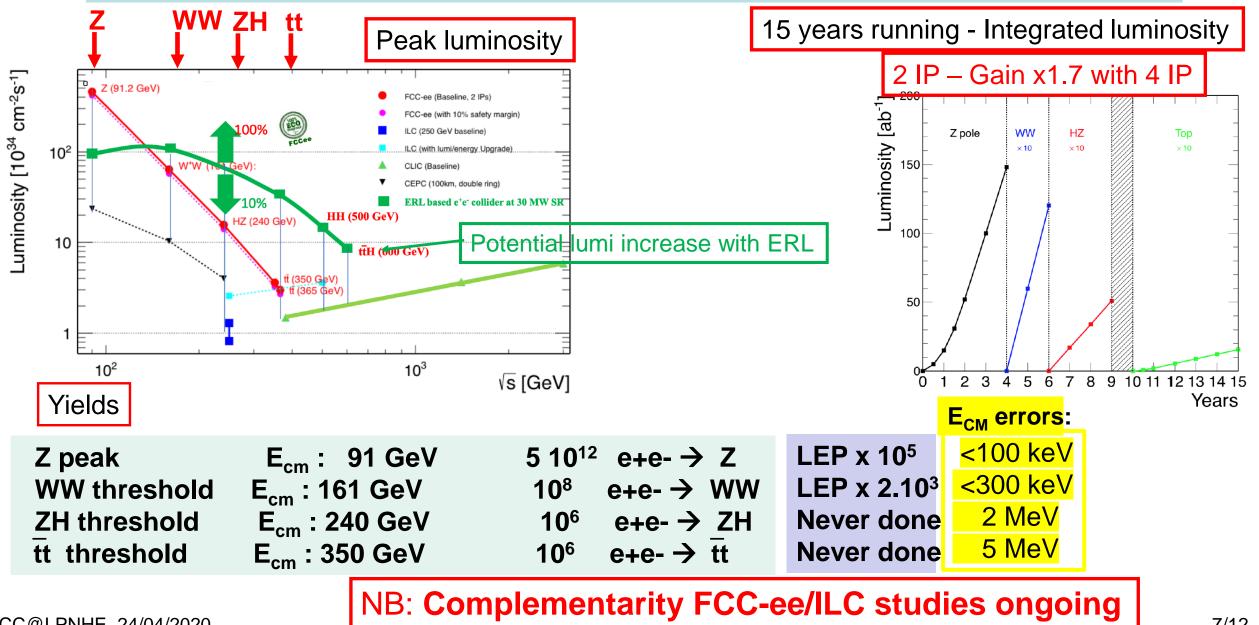
coupling

- -- detection of rare decays $H \rightarrow V\gamma$ (V= ρ , ϕ , J/ ψ , Υ , Z ...)
- -- search for invisibles (DM searches, RH neutrinos in W decays)
- -- renewed interest for long lived (very weakly coupled) particles.
- -- rich top and HF physics program
- -- Cleaner signals for high Pt physics

-- allows clean signals for channels presently difficult at LHC (e.g. H→ bb) FCC@LPNHE_24/04/2020

FCC-hh will explore the Higgs in completely new and different kinematic regimes

C. Grojean


Understanding EWPT

FCC-eh discovery potential & more

FCC-ep explores hitherto untouched domain of (x,q2) DIS plane and provides production of high mass SM particles (H, top) in cleaner conditions than pp.

- -- extremely precise structure function work important input on structure functions for FCC-hh complete resolution of the partonic contents of the proton, for the first time high precision α_s O(10⁻⁴) similar to FCC-ee from totally different source
- -- 2 10⁶ Higgs produced from from W & Z to deliver precise H couplings complementary to ee -- esp (g_{Hww})
- -- Searches for new physics (Leptoquarks, RH neutrinos, etc...) in new domain of mass and couplings
- -- rich top (Vtb @% level, FCNC) and HF physics program
- -- Discovery in QCD: non-linear parton evolutions, instantons?, ..
- -- Unique electron-ion physics related to QGP physics

Operation FCC-ee

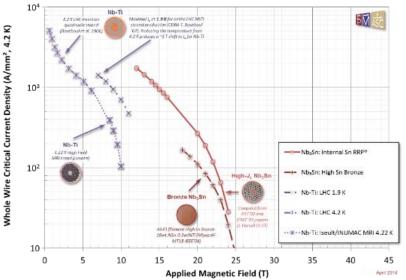
FCC@LPNHE_24/04/2020

Operation FCC-hh

parameter	FCC-hh		HL-LHC	
collision energy cms [TeV]	100		14	
dipole field [T]	16		8.33	
beam current [A]	0.5		1.1	
bunch spacing [ns]	25	25	25	
synchr. rad. power / ring [kW]	2400		7.3	
SR power / length [W/m/ap.]	28.4		0.33	
long. emit. damping time [h]	0.54		12.9	
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	
events/bunch crossing	170	1000	132	
stored energy/beam [GJ]	8.4		0.7	
Integrated luminosity (ab ⁻¹)	20 (25 years)		3	

NB: Going from 2 to 4 IP for FCC-ee has big impact on FCC-hh design Challenges

- Pile-up
- Power dissipation
 - Cryogenics
- High-B magnets
 - 8.3T NbTi (LHC)
 - 11T Nb₃Sn (HL-LHC)
 - 16T Nb₃Sn (FCC)


Cost

- hh standalone 25BCHF
- With ee 17BCHF
 - Cost ee 11.6BCHF (incl. infra., tunnel)

R&D for Accelerators

- Magnets for hh: NbTi to Nb3Sn
 - Consistent path -> 16T
- R&D cavities for ee CEA Cryogenics
 - Load x5 wrt LHC

pipe +/-12.5 cm

in Z. r = 15 mm

Central

detector SA

+/-150 mrad

0

2 cm thick

cm

NEG pum

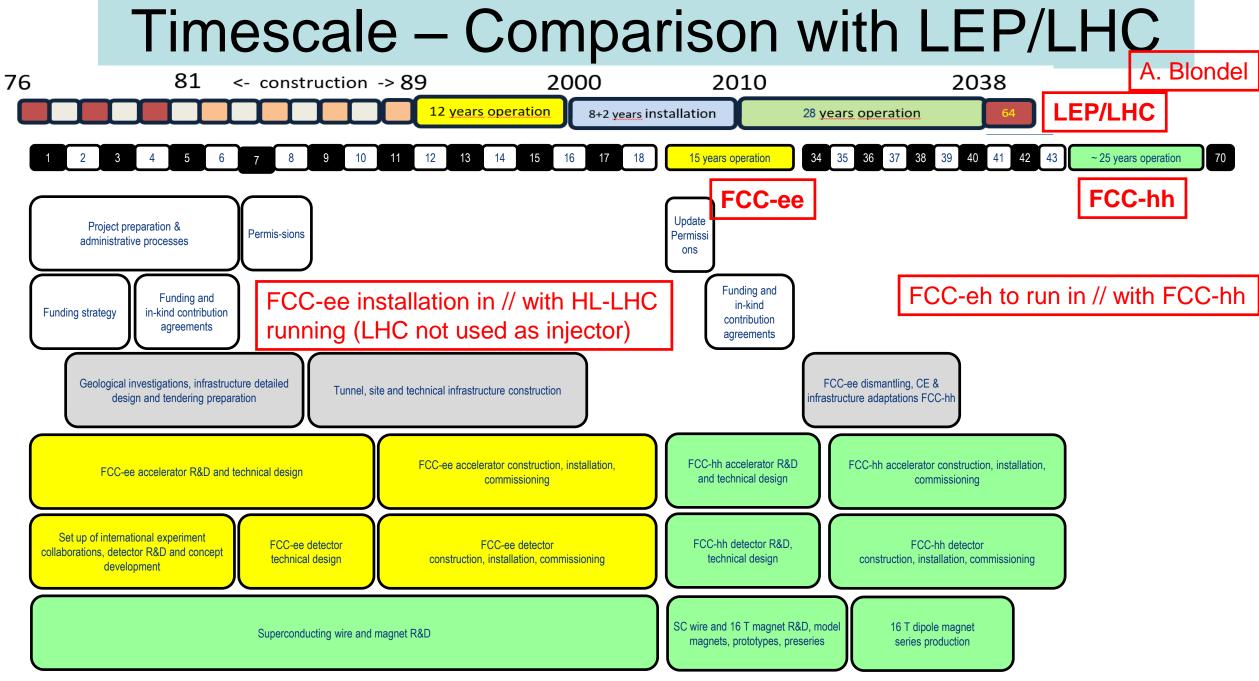
LumiCa

-1

-2

From FCC-FR

Wkshop, Nov'19


- Positron source for ee (critical for linear)
- Beam dynamics & electron cloud for hh Beam aynumus . Energy Recovery Linac for ee
 - MDI and beam alignment LAPP
 - In line w/ CLIC & SuperKEK-B R&D

2

OCI

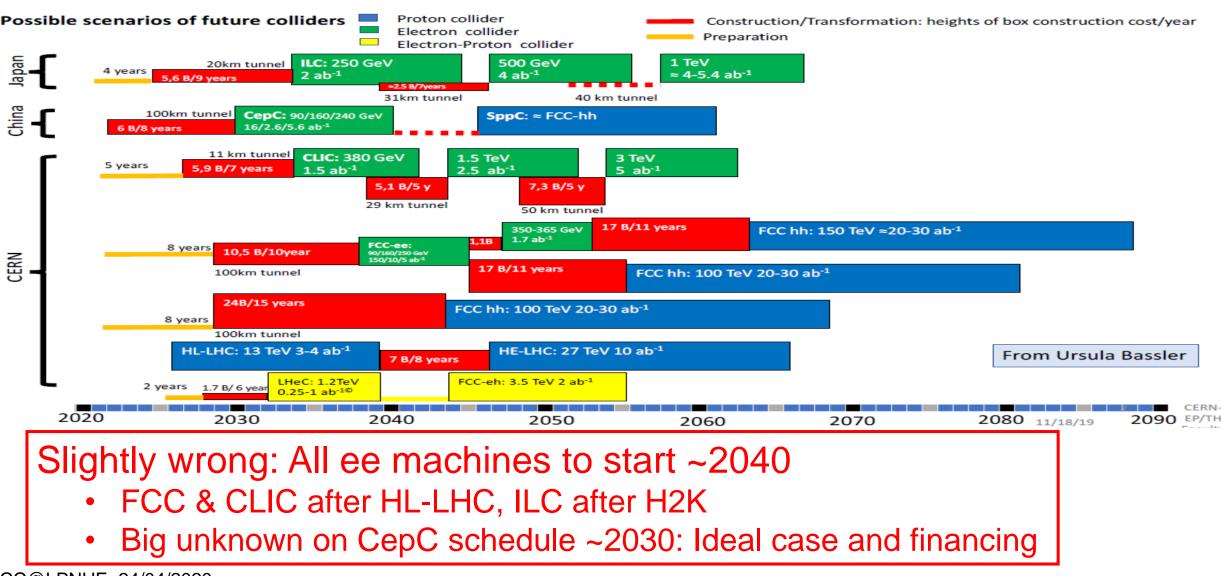
50-100 mrad

from exiting

FCC@LPNHE_24/04/2020

Achieved/Ongoing

- Collaboration
 - Conceptual Design Report (March 2019)
 - https://fcc-cdr.web.cern.ch/ and Presentation at CERN
 - FCC work with host states (eg Civil Engineering)
 - Future Circular Collider Innovation Study FCC-IS
 - Inside H2020 Co-financing for planned FCC activities Approved 03/2020
- Organization
 - Workshop: FCC Physics & Expts 1/year
 - <u>3rd FCC physics & Expts Workshop</u> Jan 2020, CERN
 - FCC week 1/year Next Paris (April 2021)
- <u>Regular meetings</u> Physics ee, WG11 (Detector ee), software, ... FCC@LPNHE_24/04/2020


Next 2020-2026

- Of course dependent of ESPP recommendation
 - Feedback end May/June
 - A priori 'FCC' (ie no mention ee or/and hh) strongly supported
- Goal
 - Perform all needed studies to allow for final project decision by 2025-2026 (next ESPP recom.) -> Able to start digging tunnel by 2028/2029
- Steps
 - Setting up Governance model, Financing strategy, Civil Engineering (site investigation, discussion with host states)
- In parallel
 - TDRs for machine, beam elements by 2025/2026
 - Establish user communities, work towards proto experiment collaboration by 2025/26 (Letter of Intent)

FCC@LPNHE_24/04/2020

BACKUP

Different projects timescale

Other options

Alternatives to FCC-ee en route to FCC-hh

LE-FCC, then FCC-hh CLIC-380, then FCC-hh Not complementary nor synergetic with FCC-hh Higgs + Top physics programme ~ FCC-ee (365) Brings no additional measurement wrt FCC-hh **Measurements less precise than FCC-ee** Kills all FCC-ee synergies/complementarities Only 175,000 Higgs boson (vs 1.3×10⁶) Weakens the physics case of FCC-hh m_H precision ~ 80 MeV: affects g_{Hww}, g_{Hzz} precision Reduces the CM energy increment (HIGH RISK!) $\Gamma_{\rm H}$ precision ~ 2.6% \rightarrow inferior standard candle No more guidance from FCC-ee No ee \rightarrow H possibility (too small luminosity) CLIC GigaZ: Poor E_{beam} determination, <<< 5 10¹² Z Reduces CERN attractiveness (only pp physics) More expensive than FCC-INT More expensive than FCC-INT CLIC 3 TeV, no FCC-hh: ONE Experiment **ILC in Japan** Similar shortcomings as CLIC-380 + GigaZ Not incompatible/complementary with FCC-ee Lack of precision of EW measurements (stat, Ebeam) Many FCC-ee measurements are unique (Z, W, H) $\ll 5 10^{12}$ Z (no ALPs, no RHvs, no flavours, ...) Added value of ILC in the higher energy range No ee \rightarrow H possibility → 350 GeV and above, with long. Polarization Short of statistics with respect to FCC-hh Complementary to FCC-ee (350/365) Remember LEP vs SLC Higgs rare decays, g_{HHH}, W's, b's and top's FCC-ee remains the richest/fastest way to FCC-hh Limited high energy exploration ILC cost to be supported by Japan Cost (~FCC-hh) incompatible with hadron program

P. Janot