
Ganga
The Job Submission Tool
WeiLong Ueng
wlueng@twgrid.org

Objectives

•  This tutorial gives users to understand
–  Why require Ganga in Grid environment
–  What advantages of Ganga
–  The Architecture of Ganga
–  The Implementation of Ganga
–  How to use Ganga for job management

Outline

•  Overview
•  Ganga Job Components
•  Ganga Architecture
•  Ganga Interface
•  Ganga & DIANE
•  Ganga - Use Case

Background

•  Growing numbers of distributed system
–  Scaling of distributed systems, from local batch systems

and community-specific services to generic, global Grid
infrastructures

–  Debug on PC, then perform small-scale testing in local
resources and finally run at full-scale in globally
distributed Grids

•  Supports Different Backends
–  Backends: PBS, Condor, LCG, EDS… etc
–  How to deploy on various backends in an efficient way

Motivation

Motivation

Motivation

Applications

•  Originally design to meet the needs of the ATLAS
and LHCb for a Grid user interface

•  configuring and running applications based on the
Gaudi / Athena framework common to the two
experiments

Why We Need Ganga

What is Ganga

•  Ganga is an easy-to-use frontend for job definition
and management

•  Simplified use of Grid
•  allows trivial switching between testing on a local

batch system and large-scale processing on Grid
resources

•  implemented in Python
•  The latest version: GANGA 5.4.0

–  released 28 Oct, 2009

The Purpose of Ganga

•  Easy for users to create, submit and monitor the
progress of jobs

•  Move transparently from different resources
•  Keeps track of all jobs and their status through a

repository that archives all information between
independent Ganga sessions

•  Simplify the progression from
–  Rapid prototyping on a local computer
–  Small-scale tests on a local batch system
–  The analysis of a large dataset using Grid resources

Features of Ganga

•  A user- and application-oriented layer above existing
job submission and management technologies

•  Interchangable and Interoperability
•  Ex. Globus, Condor, UNICORE or gLite

•  Encapsulate all low-level setup of the application
•  Hidden the heterogeneity of backends and data

access

Job Component

•  The code to execute
•  Input data for processing
•  Data produced by the application
•  The specification of the required processing

environment
•  Post-processing tasks
•  Metadata for bookkeeping

Ganga Job Components

Ganga Job Components

•  Application
–  The type of computational task
–  Define the software to be run

•  Backend
–  Define the processing system to be used
–  Including Localhost, batch systems(PBS), Load Sharing

Facility(LSF), Sun Grid Engine, Condor, Grid Systems

Ganga Job Components

•  Dataset
–  Uniquely identify a particular collection of data
–  Provide methods for obtaining information about it, such

as its location and size.
–  The Descriptions of Data Collections

•  Vary from different problem domains
•  Splitter

–  Specify the number of subjobs to be created
•  Merger

–  Allows for the aggregation of subjob outputs

The Component Structure of A Job

To Form a Complete Job

•  Application
–  exe: the path to an executable binary or script
–  args: a list of arguments to be passed to the executable
–  env: a dictionary of environment variables and the

values they should be assigned before the executable is
run

j = Job()
j.application = Executable(exe=File('/opt/anotherscript'), args=['-d',File('/
etc/x')])
j.submit()

To Form a Complete Job

•  Backend
–  Parameters describing the behaviour of a processing

system
–  Differs among different backend systems
–  Methods for job executions, retrieval of jobs status

In [86]:plugins("backends")
Out[86]: ['LSF', 'LCG', 'Dirac', 'gLite', 'PBS', 'Condor', 'Local']

To Form a Complete Job

•  Dataset
–  Datasets

•  the files or databases stored externally
–  Sandbox

•  consists of files transferred from the user’s file system
together with the job

–  Sandbox mechanism handles small files (typically up to
10MB)

j.inputsandbox = [File(extra_file')]
j.inputsandbox = ['extra_file']

j.outputsandbox = ['b.dat','a*.txt']

To Form a Complete Job

•  Splitter
–  ArgSplitter:

•  Deals with executing the same task many times over
with changing arguments each time

–  args: list of sets of arguments to be passed to an
application

In [21]:s = ArgSplitter(args=[['A'],['B'],['C']))
In [22]:j = Job(splitter=s)
In [23]:j.submit()
Ganga.GPIDev.Lib.Job : INFO submitting job 164
Ganga.GPIDev.Adapters : INFO submitting subjob 16400001
Ganga.Lib.Localhost : INFO job 16400001 submitted
Ganga.GPIDev.Adapters : INFO submitting subjob 16400002
Ganga.Lib.Localhost : INFO job 16400002 submitted
Ganga.GPIDev.Adapters : INFO submitting subjob 16400003
Ganga.Lib.Localhost : INFO job 16400003 submitted
Out[23]: 1

To Form a Complete Job

•  Merger
–  Combing data in a particular format
–  (ex. Text strings or data representing histograms)
–  TextMerger:

•  concate the files of standard output and error returned
by a set of subjobs

–  RootMerger:
•  sums the histograms produced in ROOT format

In [4]:j.merger=TextMerger()
In [5]:j.merger.files=['stdout']
In [6]:j.merger.ignorefailed = True
In [7]:j.submit()

In [17]:j.peek()
total 3.0K
-rw-r--r-- 1 moscicki sf 903 Jun 11
13:08 stdout.merge_summary
-rw-r--r-- 1 moscicki sf 1.2K Jun 11
13:08 stdout

Job Representation - Example

Job Representation - Example
j = Job()
j.application=Athena()
j.application.prepare(athena_compile=False)
j.application.option_file=['$HOME/atlas/testarea/14.2.10/PhysicsAnalysis/
AnalysisCommon/UserAnalysis/run/AnalysisSkeleton_topOptions.py']
j.application.max_events='100'
j.inputdata=DQ2Dataset()
j.inputdata.dataset='trig1_misal1_mc12.005322.PythiaVBFH170wwll.recon.AOD.
v13003003_tid017852'
j.outputdata=DQ2OutputDataset()
j.outputdata.outputdata=['AnalysisSkeleton.aan.root']
j.splitter=DQ2JobSplitter()
j.splitter.numsubjobs=3
j.merger=AthenaOutputMerger()
j.backend=LCG()
j.backend.requirements.cloud='DE'
j.submit()

Application

Dataset

Dataset

Splitter & Merger

Backend

Ganga Architecture

Ganga Interfaces

•  Built on top of the Ganga Public Interface (GPI)
•  A Text-based Command Line in Python reference
•  A File-based Scripting Interface
•  Graphical User Interface (GUI)

A File-based Scripting Interface

•  From the command line, a script myScript.py can be
executed in the Ganga environment using:
–  Shell> ganga myScript.py

•  myScript.py

Ganga GUI
Job details

Logical
Folders

Job Monitoring

Log window

Job builder

Scriptor

There	
 is	
 also	
 a	
 scrip-ng	
 interface	
 (like	
 pAthena)	

I	
 will	
 use	
 the	
 line	
 mode……	

Ganga GUI

Ganga Public Interface (GPI)

•  User-level Interface separated from low-level,
internal API

•  Templates of Job Configurations
–  Frequently used job configurations

•  Hierarchical JobTree
–  Jobs can be labelled and organised in a hierarchical

jobtree

Ganga Core

•  Credentials Management
–  User credentials, including classic Grid proxies with

extensions for VOMS
–  Renew and destroy the credentials using GPI
–  Multiple security models

•  Monitoring
–  Internal Monitoring
–  External Monitoring

Ganga Core – Job Monitoring

•  Internal Monitoring
–  Polling job status for varying backends
–  The remaining validity of authentication credentials

•  External Monitoring
–  Dynamically adding third-party monitoring sensors
–  Monitoring sensor

•  Client side
•  Remote environment

–  Allow collection of both
•  generic execution information
•  Application-specific data

Core - Job Monitoring

Persistency Manager

•  Job Repository Database
–  Job Persistence and Objects
–  Job Bookkeeping and Metadata
–  Local and Remote Repository
–  Schema Migration

•  File Workspace
–  The Input and Output files associated with the Jobs

Application Plugins

•  Provides a configuration object which contains
backend- independent information:
–  ���The application to be run
–  ��The user code to be executed
–  �The values to be assigned to any configurable

parameters
–  The data to be processed

Job Plugins

•  Accepts an input configuration object and calls the
application runtime handler responsible for the
backend-specific part of the application
configuration and management:
–  Job splitting
–  Packaging of user code
–  Submitted jobs to the backend
–  Monitoring job progress
–  Retrieving output files when jobs complete

Ganga Workflow

Python script – Running Athena
j = Job()
j.application=Athena()
j.application.exclude_from_user_area=["*.o","*.root*","*.exe"]
j.application.prepare(athena_compile=True)
j.application.atlas_release="14.2.10"
j.application.option_file=['my_jobOption'] <= jobOption filename (absolute path) //
j.application.max_events='100'
j.inputdata=DQ2Dataset()
j.inputdata.dataset="mc08.007081.singlepart_gamma_E10.recon.AOD.e339_s439_r462_tid023328"
j.inputdata.number_of_files=1
<= if you want to analyze a specified number of files
j.inputdata.type='DQ2_LOCAL'
file directly on SE // 'DQ2_DOWNLOAD' to force copy of file to WN)
j.outputdata=DQ2OutputDataset()
j.outputdata.outputdata=['recon.CBNT.pool.root']
j.outputdata.location="IN2P3-LAPP_LOCALGROUPDISK"
j.splitter=DQ2JobSplitter() <= if you want to analyze complete dataset
j.splitter.numsubjobs=6 <= (specifiy the number of subjobs)
j.merger=AthenaOutputMerger()
j.backend=LCG() j.backend.requirements.cloud='FR' //
j.backend.requirements.sites= ['LYON_MCDISK'] (dq2-ls -r command) j.submit()

Ganga & DIANE

•  DIANE
–  A lightweight agent-based scheduling layer on top of the

Grid
–  Master & Worker Model

•  Ganga used in combination with DIANE
–  DIANE works as an overlay scheduling system
–  Ganga works as a well-structured job management tool

•  DIANE worker agents are executed as Ganga jobs

Ganga Submitter in DIANE Architecture

Ganga Job Submission tool in
DIANE

Use Case
Ganga Interfaced to DIANE
Framework

•  Drug Discovery, Auto-docking Tool developed by
ASGC, TW
–  Ganga embedded in web-based services
–  This tool is for analysis of candidate drugs against avian

flu
•  Ganga as a job management component embedded

in DIANE, with the application

 Drug Discovery Tool with Ganga

Drug Discovery Tool with Ganga

Ganga	
 as	
 a	
 job	
 management	
 component	
 embedded	
 in	
 DIANE,	
 with	
 the	
 applica-on,	
 	

Drug	
 Discovery	
 Tool	

Referencs

•  Ganga Home
–  http://ganga.web.cern.ch/ganga/index.php

•  Ganga User Guide
–  http://ganga.web.cern.ch/ganga/user/index.php

•  Ganga GPI Reference
–  http://ganga.web.cern.ch/ganga/release/4.3.2/reports/

html/Manuals/GangaTutorialManual.html

~ The End ~

