

Grid for Biomedical Applications

Ana Lucia DA COSTA HealthGrid, France

ACGRID School

KualaLumpur, 10 Nov 2009

Guiding and promoting the grid technologies and their applications into health research and development

Make successful the regular and worldwide use of healthgrids at the industrial level

- Until 2003: Pre-genomic era with sequencing of 20,000–25,000 genes of the human genome
- Since 2003: Post-genomic era to undersand « cell mysteries »
 - => Quantity and heterogeneity characterize data coming from the post-genomic era
 - => The life sciences sector collects vast amounts of complex biological data requiring the use of advanced ICT to make sense of it all.

Added Value of Grid for Biologists

- The grid provides the centuries of CPU cycles required on demand
- The grid provides the reliable and secure data management services to store and replicate the biochemical inputs and outputs
- The grid offers a collaborative environment for the sharing of data in the research community on emerging and neglected diseases

- Various aspects of Biomedical Sciences can benefit from a grid-based approach:
 - Search for new drug targets within the genome and the proteome,
 - Identification of single nucleotide polymorphisms (SNPs) relating to drug sensitivity
 - Protein Folding
 - Drug resistance mechanism elucidations
 - Epidemiological monitoring of disease outbreaks
 And so on...

Introduction

- Biologists need growing capability to handle all the data relevant to their research topics
 - Design of complex analysis workflows
 - Knowledge management
- Bioinformaticians who are developing the IT services for the biologists need growing resources
 - To store, update, curate exponentially growing databases
 - To run increasingly complex algorithms on this growing data set
 - To build new databases exploiting the growing body of knowledge
- Biologists and bioinformaticians have therefore different needs
 - Biologists need high level environments and little resources
 - Bioinformaticians need large resources to develop and/or update the services needed by the biologist

Grid enabled drug discovery

• Pharmaceutical development:

- Time-consuming: more than 10 years to develop a new medicine
- Expensive: hundreds millions of dollars
- Emergent and neglected diseases need fast and cheap answer

Computational tools:

- More and more known and registered protein 3D structures
- More and more libraries of known chemicals
- More and more computing power available
- Better quality of prediction for bioinformatics tools, but CPU-consuming

Virtual screening using grid to speed-up the process and minimize the costs

Grid enabled drug discovery

• To analyse large databases of chemical compounds in order to identify possible drug candidates

From Grid to Lab

- TARGET: 3D structure for a key protein in a disease
- LIGAND: database of chemical compounds commercially available
- SOFTWARES for virtual screening: docking, molecular dynamics
 - Parallel computations
 - Licences if needed (BioSolveIT and CCDC provided free licences for specific projects)

- Docking results between a ligand and a protein based on:
 - Scoring
 - Match information
 - Different parameters settings
 - Knowledge of binding site

 The Protein Databank contains information about experimentally-determined structures of proteins, nucleic acids, and complex assemblies http://www.rcsb.org/

		Proteins	Nucleic Acids	Protein/NA Complexes	Other	Total
Exp. Method	X-ray	48337	1168	2221	17	51743
	NMR	7003	869	150	6	8028
	Electron Microscopy	171	16	65	0	252
	Hybrid	15	1	1	1	18
	Other	115	4	4	9	132
	Total	55641	2058	2441	33	60173

- Comprehensive (> ~500,000 compounds)
 - search in the dark
- Diversity-based to cover 'chemical space'
 - efficient search in the dark
- "Focused" or "Targeted" for lead identification
 - e.g.filtered by 2D or 3D pharmacophores
- Focused" or "Targeted" for lead optimization
 - focussing the spotlights
- Combinatorial Libraries

Docking Programs

- DOCK: (Kuntz et al. 1982)
- DOCK 4.0 (Ewing & Kuntz 1997)
- AutoDOCK (Morris et al. 1998)
- GOLD (Jones et al. 1997)
- FlexX: (Rarey et al. 1996)
- GLIDE: (Friesner et al. 2004)
- ADAM (Mizutani et al. 1994)
- CDOCKER (Wu et al. 2003)
- CombiDOCK (Sun et al. 1998)
- DIVALI (Clark & Ajay 1995)
- DockVision (Hart & Read 1992)

- FLOG (Miller et al. 1994)
- **GEMDOCK** (Yang & Chen 2004)
- Hammerhead (Welch et al. 1996)
- LIBDOCK (Diller & Merz 2001)
- MCDOCK (Liu & Wang 1999)
- PRO_LEADS (Baxter et al. 1998) SDOCKER (Wu et al. 2004)
- QXP (McMartin & Bohacek 1997)
- Validate (Head et al. 1996)
-

Experiments

Grid environment

- Develop an environment to monitor the deployments on grid: Wisdom Production Environment
 - Produce a large amount of data during the datachallenge
 - in a limited time and minimal human needs
 - Manage the fact that grid is heterogeneous and dynamic
 - a workflow of grid job handling: automated job submission, status check and report, error recovery
 - · push and pull model job scheduling
 - batch mode job handling

Results obtained

EUAsiaG

Providing Grid to non experts

WISDOM ENVIRONMENT

- Complex and unflexible
- For people familiar with GRID
- Drug discovery applications

Implementation

EUAsiaGrid

Wisdom Production Env

EUAsiaGrid

Wisdom Production Env

WISDOM data manager

- high-level services to manage the data and metadata related to the applications and tasks
- service that can be used to automatically deploy and synchronize data on the grid (including databases)
- set of APIs to access and query data

WISDOM information system

based on AMGA metadata catalogue

Task Manager Interactions

Task submission process

Now it's time for hands-on...

Advanced Computing and GRID Technologies for Research