gclagc

Enabling Grids
for E-sciencE

DIANE
Distributed ANalysis

Environment

WeiLong UENG
ASGC
wlueng@twgrid.org

=

EV Grid

* History

 Motivation

 Overview

 DIANE Architecture

 DIANE Computing Model

 DIANE Application Framework

 Use Case - Application Implementation

FP7-INFRA-223791 f

EV Grid

History

 The DIANE R&D Project was started at CERN in 2000

— Initially it was intended to be specific to the distributed
data analysis for High Energy Physics

— Later the scope was extended and the tool was
sucessfully used for Monte Carlo simulations based on
Geant4 toolkit.

 DIANE gained popularity in various user
communities as EGEE project involved more
scientific communities.

FP7-INFRA-223791 f

EV Grid

« Using middleware directly requires a lot of manual
work

 Not easy to monitor the job progress and cancel jobs
using middleware

 Based on users’ requirement
— Integration of task results
— monitoring of job progress and individual tasks
— automatic error-recovery policies

— granularity of the size of the task may change
independently of the number of workers -- natural load-
balancing and optimization of performance

— uniform, transparent and easy user interface and API
hiding complexity of underlying middleware mechanisms

— the same API and Ul is used when running local jobs and

FP7-INFRA-223791 GRID jobs [

=

EV Grid

* DIANE will ...

* Help application communities and smaller Virtual
Organizations using the distributed computing
infrastructures more efficiently

* Lead to an improvement of the quality of service of
the EGEE/LCG Grid

FP7-INFRA-223791 f

EV Grid

« A framework for efficient control and scheduling of
computations on a set of distributed worker nodes.

 DIANE Allows you

— Reduce the application execution time by using the
resources more efficiently,

— Reduce the user work overhead by providing fully
automatic execution and failure management,

— Efficiently integrate local and Grid resources.

FP7-INFRA-223791 f

=

EV Grid

* A Light-weight Distributed Framework

« Synchronization, Communication and Workload
Management

— The execution of a job is fully controlled by the

framework which decides when and where the tasks are
executed.

« A Thin Software Layer

— Easily work on top of more fundamental middleware,
such as PBS, LSF or the Grid resources

FP7-INFRA-223791 f

EV Grid

 Managing large number of small independent tasks
(typically for parametric study)

 Dynamic Workload Balancing for Parallel
Applications

« User-level Job Scheduling
* Failure Recovery

 Agent-based computing or Pilot jobs in which a set
of worker agents controls the resources.

FP7-INFRA-223791 f

What DIANE Used For?!

Application Oriented User Interface

Command Line Tools Web Portal

Graphic User Interface

!

L}

DIANE Framework

Application Adapter

Task Scheduler

[AutoDock | | BLAST |

[Geantd | | ATHENA |

Backend Handler Adapter
[GANGA | | Build-in |

L}

[]
&

Personal Desktop

e
oF

Computing Cluster

FP7-INFRA-223

Computing Worker Nodes

+ | "

“oy g wf

Computing Grid

-\

EV

Grid

DIANE Features "

EV Grid

 DIANE core framework does not depend on any
concrete application (in particular any data analysis
software)

* Implemented in Python running CORBA
« Supported Language for Applications

— C++ and python application components are supported
directly

— Application written in any language in a form of
executable file (FORTRAN, Java) may also be used

 Latest version: DIANE 2.0-beta20

FP7-INFRA-223791 (

=

EV

Grid

 Handles the communication and networking
transparently

* Flexibility for implementation of users’ own
scheduler and worker classes to support more
complex scenarios

« Completely Transparent between Applications and
Backends

 Customized Error Recovery Policies

FP7-INFRA-223791 f

=

DIANE Architecture S

« Based on Master-Worker Model

— Improve application execution time and provide partial
fault tolerance

e Master

— Mapping tasks to workers and decide the policy of
failures in task execution

— Defining the application-specific action(e.g. merging of
outputs)
 Worker
— Tasks execution and output transmission
— Keep contact with Master

FP7-INFRA-223791 f

——‘" . _7". .
EVUAsiaGrid

FP7-INFRA-223791

User PC

FP7-INFRA-223791

The agents contact the master

Ganga &
DIANE

(EGEE Jobs <-> Agents)

B o S8
EVAsIiaGrid

=

Active Feedback vs. Batch Operation Mode EVUASsiaGrid
Parallel Analysis Jobs: batch operation mode

User Interface

Application sub-jobs maps one-to-one to a job
in the Batch System. User Interface must poll to
retrieve current state of the subjobs. Each
subjob must be initialized and executed

‘ separately.

Application
Handler

prepgr_e Job lT prepare output

split job ,
merge subjobs
d J submit subjobs

poll current state

|J0bHandler‘

Batch System \

YN

‘ subjob ‘ ‘ subjob ‘ ‘ subjob ‘

‘ subjob ‘ ‘ subjob ‘

FP7-INFRA ‘ subjob ‘ ‘ subjob ‘ ‘ subjob ‘

=

Active Feedback vs. Batch Operation Mode EVUASsiaGrid

X

Parallel Jobs: active feedback mode

One job in the Batch System (Worker) may
handle one or many application subjobs. Worker

User Interface pulls subjobs if it is free so the system self
S— load-halances naturally. Subjohs may share
Application common initialization and may be executed in
Handler the same process if needed.

lit joh
SPitIo merge subjobs

JobHandIer\ SHOMIWGTREES ...‘ Batch System “
subjobs ‘1 update state / l \

prepare job lT prepare output

PULL
Job Master
S = o= Worker Worker ‘Worker
subjob
subjob subjob

FP7-INFRA-Z subjob

EV Grid

/__,'b/
request new tasks !
Worker \ Worker
]]
0'- i . "‘o

execute tasks and
produce results

FP7-INFRA-2

DIANE Appllcatlon Framework

* on the master node:
— Task Scheduler
— Application Manager
— Run Manager

* on the worker nodes:
— Application Worker
— Worker Agent

FP7-INFRA-223791

=

EV Grid

RunMaster

Task ’ Application ’
Scheduler

Manager

L

a

-,

WorkerAgent (1)

Application
Worker

00— @

WorkerAgent (2)

Application
Worker

00— @

R

=

EV Grid

ganga LCG.py

Submitter

.

diane-run [X.run
diane-worker-start

FileTransferService |
RunMaster

applications

WorkerAgent

applications

networking networking

[FileTransferService

(DirectoryService)

applications

networking

FP7-INFRA-223791 f

DIANE Framework
Application Components

EV Grid

 They are python classes implement the following
interfaces
— on the master node:
» task scheduler: diane.ITaskScheduler.ITaskScheduler

 application manager:
diane.lApplicationManager.lApplicationManager

— on the worker nodes:

» application worker:
diane.lApplicationWorker.lApplication\WWorker

FP7-INFRA-223791 [

=

« Communication between Master and Worker

1

registerWorker) 1

put_init_result
RunMaster 4

get_task_data

get_init_data
5 —
Repeat 4 and 5
put_task_result

EUAsiaGrid
T
O
(@)
£
©
5
) WorkerAgent
\—4

ping

[ControIThread]

FP7-INFRA-223791

Periodically Send the Heartbeat

1—| HeartBeatThread]

.

N ———

-

1

registerWorker

get_init_data

put_init_result

RunMaster

get_task_data

put_task_result

[ControIThread] ping

Repeat 4 and 5

-\

EVASIaGrid
/ \f)
T
©)
(@)}
c
S
5
) WorkerAgent

Periodically Send the Heartbeat

j—lL HeartBeatThread]

-

=

DIANE Framework EUAsiaGrid

 The Internal of Master(RunMaster)

WorkerReglstry RunMaster reglsterWorker
[U WorkerEntry }Q

get_init_data
scheduled_tasks
\ pUt_init_reSU” P
get_task_data P
SimpleTaskScheduler
todo_tasks ping P
ll TasklInfo
(tasks_completed put_task_result)
p
SimpleApplicationManager _ I
(Real Application) C tasks_failed ControlThread
itial '
(initialize (tasks_lost Check lost or idle
Chas more workb I {}
C tasks_done ?Cworker_removed)ﬁ 3
- remove_worker
finalize —)
L C D |

.

 Look at Worker side

1

registerWorker 1

Repeat 4 and 5
put_task_result

get_init_data
p
put_init_result : - = =
RunMaster
get_task_data

-\

EVAsIatrid

StandingCall

WorkerAgent

» j—l HeartBeatThread

ping
[ControIThread] Periodically Send the Heartbeat

—

FP7-INFRA-223791 f

FP7-INFRA-223791

* The Internal of Worker Agent

]

(registerWorker)

put_init_result
(put_task_result)J

ping

RunMaster

get_task_data

=

EV Grid

WorkerAgent

(" N\

|ApplicationWorker

initialize >

/ do_work)

C finalize)

(

[HeartBeatThread]

[ControlThread]

—

=

DIANE ramework | FUBSaC]
Networking and Communication Layer

* Invisible to the application
 Reliable messaging between the master and the
workers

« Always unidirectional
— From the workers to the master

— Allows the control of the worker agents by the master as
if the communication was bidirectional

FP7-INFRA-223791 f

-\

EVAsIatrid

« diane-worker-start
« Use Ganga as workerAgent jobs submitter

worker submitter host

start remote processes

Grid | Horkerfigentl Horkerfigent2 «ds | LSF | HorkerfAgent3 +d+ | ssh |HorkerfAgent4 .ole master host

start local process

RunHMaster

FP7-INFRA-223791 f

"
s

DIANE - Example frc

Here’s the example of simple executable application

Hello script

#!/usr/bin/env bash
rm -f message.out
echo hello $* > message.out

echo "I said hello $* and saved it in message.out"”

Suppose to run this script for 20 times the “Hello” executable script,
changing its arguments every time

FP7-INFRA-223791 f

EUAsiaGrid

File: hello.run (it's a simple python file defining the work to be done)

tell DIANE that we are just running executables

the ExecutableApplication module is a standard DIANE test application
from diane_test_applications import ExecutableApplication as application

the run function is called when the master is started
input.data stands for run parameters
def run(input,config):
d = input.data.task_defaults # this is just a convenience shortcut

all tasks will share the default parameters (unless set otherwise in individual task)
d.input_files = ['hello’)
d.output_files = [‘message.out’)

d.executable = 'hello’

here are tasks differing by arguments to the executable
for i in range(20):
t = input.data.newTask()

t.args = [str(i)]

Now you can start the master using the run file:
diane-run hello.run

FP7-INFRA-223791 f

“

DIANE - Example

» The master will start in its own run directory
(this information is printed by the master - check the output).

* The rundir is typically located in ~/diane/runs/nnn.
 The default location may be changed with $DIANE_USER_WORKSPACE

environment variable.

To start a couple of worker agents:
$ ganga LocalSubmitter.py --diane-worker-number=5

* All results are stored by the master in the run directory
(this behaviour may be customized and depends on the application plugins).

FP7-INFRA-223791 f

Grid

* Drug Discovery Application
— Developed by ASGC, TW

00 Virtual Screening Service

0 4% 8

[Target = Ligand Docking Parameter

| Default Targets ™ Target Structure

Target : DC2_TO1IAN

Name Owner

DC2_TOZIAN DEFAULT

DC2_TO3IAN DEFAULT

DC2_TO4IAN DEFAULT

DC2_TOSIAN DEFAULT [TRP]189 B HE #1615

DC2_TOG6IAN DEFAULT ~=—

DC2_TO7IAN DEFAULT \ \J ’

DC2_TOB8IAN DEFAULT

Dengue_NS3 DEFAULT { J g
Visualize)

Job Description : Resource Domain: | GRID |5 Worker Number : 10 ‘?‘ / Submit)

FP7-|NFRA-223791?_

/|) <9

=

Drug Discovery Application Implementation EUASIaGrid

4 Y
|ApplicationManager |ApplicationWorker
;initialize
:do_work
7 finalize
7 :
% Inherit
o — 2 ,.;.«
SimpleApplicationManager 4
‘initialize ? Implement
:has_more_work ?
:tasks_done Z
finalize

AutodockWorker

\\;..,I

Implement

ottt

o

AutodockApplicationManager

FP7-INFRA-223791 f

Drug Discovery Application Implementation

 The internal of AutodockApplicationManager

:initialize

1. Initialize this target and ligands
by querying AMGA metadata

2. Initialize the tasks QUEUE

:tasks_done

1. Receive the task results, and
pass the results to the integration
function.

2. Update the post processing
results to AMGA metadata.

FP7-INFRA-223791

:has_more_work

1. Return true if the tasks
QUEUE is not EMPTY, otherwise
false.

finalize

1. Finalize this docking RUN.

=

EV Grid

- “ -
o/ 1@

=

Drug Discovery Application Implementation EUASIaGrid

* The internal of AutodockWorker

initialize finalize

1. Basically do nothing

1. Prepare the environment for
running 'autodock’

:do_work

1. Get the target and ligand information
from Master(get_task_data)

2. Download the physical data of the
target and ligand.

3. Run the docking simulation using
autodock

4. Upload the docking result tarball to
GridFTP endpoint

5. Return the docking result
(put_task_result)

FP7-INFRA-223791

DIANE 2 User Interface

« Basic Run Parameters
— Application
» Define the application package (python module or package)
— run(input, config)
* |Is a function called by diane-run which sets:
— Input.data:
 the application-specific input parameters
— input.worker, input.scheduler, input.manager:

 application control components (these parameters are
typically defined in the application package and need not be
specified on-per-run basis)
« Additional run parameters
— diane-worker-start

o Start a diane worker

FP7-INFRA-223791 f

9

DIANEZ2 User Interface - Commands EUASIaGrid

— diane-env

» Full development environment may be specified with --devel or -d options
— e.g. >>diane-env —d bash =>source diane environment into current bash shell
— e.g. Submitting more workers which will connect to the master XXX

— >>diane-env —d ganga LCG.py —diane-run-file input.run —diane-worker-number 5
—diane-master=workspace: XXX

— diane-file-transfer
 File transfer between diane master and worker
— diane-Is
» List the status of masters
— diane-master-ping [Kkill]
» Check if the master is alive or kill the last running master by diane-master-
ping Kill
— diane-run
« Start a run of the diane master
— diane-worker-start
» Start a diane worker

FP7-INFRA-223791 f

EVAsIatrid

References

 DIANE: Distributed Analysis Environment

— http://it-proj-diane.web.cern.ch/it-proj-diane/
 Wiki Page

— https://twiki.cern.ch/twiki//bin/view/ArdaGrid/DIANE

FP7-INFRA-223791 f

