
DIANE
DIstributed ANalysis
Environment

WeiLong UENG
ASGC
wlueng@twgrid.org

Outline
•  History
•  Motivation
•  Overview
•  DIANE Architecture
•  DIANE Computing Model
•  DIANE Application Framework
•  Use Case - Application Implementation

History

•  The DIANE R&D Project was started at CERN in 2000
–  Initially it was intended to be specific to the distributed

data analysis for High Energy Physics
–  Later the scope was extended and the tool was

sucessfully used for Monte Carlo simulations based on
Geant4 toolkit.

•  DIANE gained popularity in various user
communities as EGEE project involved more
scientific communities.

Motivation
•  Using middleware directly requires a lot of manual

work
•  Not easy to monitor the job progress and cancel jobs

using middleware
•  Based on users’ requirement

–  Integration of task results
– monitoring of job progress and individual tasks
–  automatic error-recovery policies
–  granularity of the size of the task may change

independently of the number of workers -- natural load-
balancing and optimization of performance

–  uniform, transparent and easy user interface and API
hiding complexity of underlying middleware mechanisms

–  the same API and UI is used when running local jobs and
GRID jobs

Motivation

•  DIANE will …
•  Help application communities and smaller Virtual

Organizations using the distributed computing
infrastructures more efficiently

•  Lead to an improvement of the quality of service of
the EGEE/LCG Grid

Overview

•  A framework for efficient control and scheduling of
computations on a set of distributed worker nodes.

•  DIANE Allows you
–  Reduce the application execution time by using the

resources more efficiently,
–  Reduce the user work overhead by providing fully

automatic execution and failure management,
–  Efficiently integrate local and Grid resources.

Overview

•  A Light-weight Distributed Framework
•  Synchronization, Communication and Workload

Management
–  The execution of a job is fully controlled by the

framework which decides when and where the tasks are
executed.

•  A Thin Software Layer
–  Easily work on top of more fundamental middleware,

such as PBS, LSF or the Grid resources

What DIANE Used For?!

•  Managing large number of small independent tasks
(typically for parametric study)

•  Dynamic Workload Balancing for Parallel
Applications

•  User-level Job Scheduling
•  Failure Recovery
•  Agent-based computing or Pilot jobs in which a set

of worker agents controls the resources.

What DIANE Used For?!

DIANE Features
•  DIANE core framework does not depend on any

concrete application (in particular any data analysis
software)

•  Implemented in Python running CORBA
•  Supported Language for Applications

–  C++ and python application components are supported
directly

–  Application written in any language in a form of
executable file (FORTRAN, Java) may also be used

•  Latest version: DIANE 2.0-beta20

DIANE Architecture

•  Handles the communication and networking
transparently

•  Flexibility for implementation of users’ own
scheduler and worker classes to support more
complex scenarios

•  Completely Transparent between Applications and
Backends

•  Customized Error Recovery Policies

DIANE Architecture

•  Based on Master-Worker Model
–  Improve application execution time and provide partial

fault tolerance
•  Master

–  Mapping tasks to workers and decide the policy of
failures in task execution

–  Defining the application-specific action(e.g. merging of
outputs)

•  Worker
–  Tasks execution and output transmission
–  Keep contact with Master

Job Submission in Grid

Job Submission using DIANE

Active Feedback vs. Batch Operation Mode

Active Feedback vs. Batch Operation Mode

DIANE Computing Model

DIANE Application Framework

•  on the master node:
–  Task Scheduler
–  Application Manager
–  Run Manager

•  on the worker nodes:
–  Application Worker
–  Worker Agent

DIANE Architecture

DIANE Framework
Application Components

•  They are python classes implement the following
interfaces
–  on the master node:

•  task scheduler: diane.ITaskScheduler.ITaskScheduler
•  application manager:

diane.IApplicationManager.IApplicationManager
–  on the worker nodes:

•  application worker:
diane.IApplicationWorker.IApplicationWorker

DIANE Framework

•  Communication between Master and Worker

DIANE Framework

•  Look at Master side

DIANE Framework

•  The Internal of Master(RunMaster)

DIANE Framework

•  Look at Worker side

DIANE Framework

•  The Internal of Worker Agent

DIANE Framework
Networking and Communication Layer

•  Invisible to the application
•  Reliable messaging between the master and the

workers
•  Always unidirectional

–  From the workers to the master
–  Allows the control of the worker agents by the master as

if the communication was bidirectional

DIANE Framework

•  diane-worker-start
•  Use Ganga as workerAgent jobs submitter

DIANE - Example

Hello script

Suppose to run this script for 20 times the “Hello” executable script,
changing its arguments every time

Here’s the example of simple executable application

DIANE - Example
File: hello.run (it’s a simple python file defining the work to be done)

Now you can start the master using the run file:
$ diane-run hello.run

DIANE - Example

•  The master will start in its own run directory
(this information is printed by the master - check the output).

•  The rundir is typically located in ~/diane/runs/nnn.
•  The default location may be changed with $DIANE_USER_WORKSPACE
environment variable.

To start a couple of worker agents:
$ ganga LocalSubmitter.py --diane-worker-number=5

•  All results are stored by the master in the run directory
(this behaviour may be customized and depends on the application plugins).

Use Case - Application Implementation

•  Drug Discovery Application
–  Developed by ASGC, TW

Drug Discovery Application Implementation

Drug Discovery Application Implementation

•  The internal of AutodockApplicationManager

Drug Discovery Application Implementation

•  The internal of AutodockWorker

DIANE 2 User Interface
•  Basic Run Parameters

–  Application
•  Define the application package (python module or package)

–  run(input, config)
•  Is a function called by diane-run which sets:

–  Input.data:
•  the application-specific input parameters

–  input.worker, input.scheduler, input.manager:
•  application control components (these parameters are

typically defined in the application package and need not be
specified on-per-run basis)

•  Additional run parameters
–  diane-worker-start

•  Start a diane worker

DIANE2 User Interface - Commands

–  diane-env
•  Full development environment may be specified with --devel or -d options

–  e.g. >>diane-env –d bash =>source diane environment into current bash shell
–  e.g. Submitting more workers which will connect to the master XXX
–  >>diane-env –d ganga LCG.py –diane-run-file input.run –diane-worker-number 5

–diane-master=workspace:XXX
–  diane-file-transfer

•  File transfer between diane master and worker
–  diane-ls

•  List the status of masters
–  diane-master-ping [kill]

•  Check if the master is alive or kill the last running master by diane-master-
ping kill

–  diane-run
•  Start a run of the diane master

–  diane-worker-start
•  Start a diane worker

References

•  DIANE: Distributed Analysis Environment
–  http://it-proj-diane.web.cern.ch/it-proj-diane/

•  Wiki Page
–  https://twiki.cern.ch/twiki//bin/view/ArdaGrid/DIANE

