

TMDs in quarkonia production

Carlo Flore

Université Paris-Saclay, CNRS, IJCLab Orsay

Polarization measurements in *ee, ep, pp* and heavy-ion collisions

IJCLab, Orsay (virtual meeting)

December 18th, 2020

Outline

1. Introduction

2. TMDs & quarkonia in unpolarized collisions

3. TMDs & quarkonia in polarized collisions

4. Conclusions

1. Introduction

3D nucleon structure and TMDs

3D nucleon structure and TMDs

 collinear QCD at leading twist fails in explaining transverse polarization phenomena in high energy processes [E.Niel & A.Vossen talks]

3D nucleon structure and TMDs

- collinear QCD at leading twist fails in explaining transverse polarization phenomena in high energy processes [E.Niel & A.Vossen talks]
- a plethora of 3D distributions has been introduced, e.g. TMDs, GPDs
 [C.Van Hulse & P.Sznaider talks]

Gluon TMD distributions

8 independent gluon TMD distributions

g N	U	Circular	Linear
U	f_1^g		$h_1^{\perp g}$
L		g_{1L}^g	$h_{1L}^{\perp g}$
Т	$f_{1T}^{\perp g}$	$g_{1T}^{\perp g}$	h_1^g , $h_{1T}^{\perp g}$

Time-reversal even Time-reversal odd Non-zero in the collinear limit

- some of them are related to each other by positivity bounds
- Initial- (ISI) and Final-State Interactions (FSI) can make TMDs process dependent

$$\Lambda_{\rm QCD} \sim q_T \ll Q$$

• in general, TMDs can be probed when

$$\Lambda_{\rm QCD} \sim q_T \ll Q$$

 in such region, TMD factorization is proven, cross sections are written as convolution of TMDs

$$\Lambda_{\rm QCD} \sim q_T \ll Q$$

- in such region, TMD factorization is proven, cross sections are written as convolution of TMDs
- should work for SIDIS, $e^+e^- \to h_1h_2X$, Drell-Yan (or any pp reaction with color singlet final state) [Collins; Ji, Ma, Qiu; Rogers, Mulders, . . .]

$$\Lambda_{
m QCD} \sim q_T \ll Q$$

- in such region, TMD factorization is proven, cross sections are written as convolution of TMDs
- should work for SIDIS, $e^+e^- \to h_1h_2X$, Drell-Yan (or any pp reaction with color singlet final state) [Collins; Ji, Ma, Qiu; Rogers, Mulders, . . .]
- fixed-order (collinear factorization) q_T ≫ Q matching region: q_T ~ Q;

$$\Lambda_{
m QCD} \sim q_T \ll Q$$

- in such region, TMD factorization is proven, cross sections are written as convolution of TMDs
- should work for SIDIS, $e^+e^- \to h_1h_2X$, Drell-Yan (or any pp reaction with color singlet final state) [Collins; Ji, Ma, Qiu; Rogers, Mulders, . . .]
- fixed-order (collinear factorization) q_T ≫ Q matching region: q_T ~ Q;
- QCD evolution equation \neq usual DGLAP evolution

$2 \rightarrow 2$ vs $2 \rightarrow 1$ processes

• $2 \rightarrow 1$ processes:

• Back-to-back (low q_T) 2 \rightarrow 2 processes:

$2 \rightarrow 2$ vs $2 \rightarrow 1$ processes

- $2 \rightarrow 1$ processes:
 - Hard scale can only be the mass of the particle $Q^2 = M^2$ \longrightarrow fixed scale, not helpful for TMD evolution studies
 - quarkonium has to be at small $q_T \ll M$ \longrightarrow likely difficult to measure at colliders, particularly for mesons
- Back-to-back (low q_T) 2 \rightarrow 2 processes:

$2 \rightarrow 2$ vs $2 \rightarrow 1$ processes

• $2 \rightarrow 1$ processes:

- quarkonium has to be at small $q_T \ll M$ \longrightarrow likely difficult to measure at colliders, particularly for mesons
- Back-to-back (low q_T) 2 \rightarrow 2 processes:
 - produced quarkonia can have both large $\mathbf{p}_{\mathcal{T}}$, with small $\mathbf{q}_{\mathcal{T}} = \mathbf{p}_{\mathcal{Q}_1,\mathcal{T}} + \mathbf{p}_{\mathcal{Q}_2,\mathcal{T}}$. $|\mathbf{p}_{\mathcal{T}}|$ can be tuned to large enough values to be detectable
 - ullet This renders the TMD region $(q_{\mathcal{T}} << Q)$ virtually as wide as desired
 - Hard scale is $Q^2 = (p_{Q_1} + p_{Q_2})^2$: can be tuned for TMD evolution studies
 - Drawback: Double Parton Scattering (DPS) can be not negligible
 [Lansberg, Shao JHEP 1610 (2016) 153, NPB 900 (2015) 273, PLB 751 (2015) 479]

2. TMDs & quarkonia in

unpolarized collisions

Low P_T quarkonia and TMDs

[From J.-P. Lansberg]

PHYSICAL REVIEW D 86, 094007 (2012) Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer*

Theory Group, KVI, University of Groningen, Zemikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano

Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

- Low P_T C-even quarkonium production is a good probe of h₁^{1g}
- In general, heavy-flavor prod. selects out gg channels
- Affect the low P_T spectra:

$$\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) & \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$$

$$(R = \frac{C[w_0^{hh} h_1^{\perp g} h_1^{\perp g}]}{C[f^g/f^g]})$$

- Cannot tune $Q: Q \simeq m_Q$
- Low P_T : Experimentally very difficult

First η_c production study at collider ever, only released in 2014 for $P_T^{\eta_c} > 6$ GeV LHCb, EPJC75 (2015) 311

gg fusion in arbitrary unpolarized process

$$d\sigma^{\mathrm{gg}} \propto \overbrace{\left(\sum_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}} \hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}^{*}\right)}^{F_{1}} \mathcal{C}[f_{1}^{\mathrm{g}}f_{1}^{\mathrm{g}}]$$

 \Rightarrow helicity non-flip, azimuthally independent

$$\overbrace{+\left(\sum_{\lambda}\hat{\mathcal{M}}_{\lambda,\lambda}\hat{\mathcal{M}}_{-\lambda,-\lambda}^{*}\right)\mathcal{C}[w_{2}\times h_{1}^{\perp g}h_{1}^{\perp g}]}$$

⇒ double helicity flip, azimuthally independent

$$\overbrace{+\left(\sum_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{\lambda_{a},\lambda_{b}}\hat{\mathcal{M}}_{-\lambda_{a},\lambda_{b}}^{*}\right)}^{*}\mathcal{C}[w_{3}\times f_{1}^{g}h_{1}^{\perp g}]$$

 $+\{a \leftrightarrow b\}$

 \Rightarrow single helicity flip, $\cos(2\phi)$ -modulation

$$+\left(\sum_{\lambda}\hat{\mathcal{M}}_{\lambda,-\lambda}\hat{\mathcal{M}}_{-\lambda,\lambda}^{*}\right)\mathcal{C}[w_{4}\times h_{1}^{\perp_{g}}h_{1}^{\perp_{g}}]$$

 \Rightarrow double helicity flip, $\cos(4\phi)$ -modulation

[colorless final state]

f_1^g in double J/ψ production at LHCb (I)

[From J.-P. Lansberg]

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

- f_1^g modelled as a Gaussian in $\vec{k}_T : f_1^g(x, \vec{k}_T^2) = \frac{g(x)}{\pi(k_T^2)} \exp\left(\frac{-\vec{k}_T^2}{(k_T^2)}\right)$
 - where g(x) is the usual collinear PDF
- First experimental determination [with a pure colorless final state] of (k_T^2) by fitting $\mathcal{C}[f_1^g f_1^g]$ over the normalised LHCb $d\sigma/dP_{\psi\psi_T}$ spectrum at 13 TeV from which we have subtracted the DPS yield determined by LHCb

- Integration over $\phi \Rightarrow \cos(n\phi)$ -terms cancel out
- $F_2 \ll F_1 \Rightarrow \text{only } \mathcal{C}[f_1^g f_1^g] \text{ contributes to}$ the cross-section
- No evolution so far: $\langle k_T^2 \rangle \sim 3 \text{ GeV}^2$ accounts both for non-perturbative and perturbative broadenings at a scale close to $M_{\psi\psi} \sim 8 \text{ GeV}$
- Disentangling such (non-)perturbative effects requires data at different scales

[From J.-P. Lansberg]

F. Scarpa, D. Boer, M.G. Echevarria, JPL, C. Pisano, M. Schlegel, EPJC (2020) 80:87

- With a fit we obtained $\langle k_T^2 \rangle \sim 3 \text{ GeV}^2$
- Let us compare such a value with what a proper NLL evolution up to the scale $M_{\psi\psi} \sim 8$ GeV would give
- Evolution effects are measurable
- So far, no *x* dependence information

3. TMDs & quarkonia in

polarized collisions

Gluon Sivers function (I)

- the Sivers function $f_{1T}^{\perp a}(x,k_{\perp a})$ describes the correlation between the parton intrinsic $k_{\perp a}$ and the transverse polarization of the proton
- non-zero Sivers effect = non-zero orbital angular momentum of parton a
- any gluon Sivers function (GSF) can be expressed in terms of two "universal" GSFs (f- and d-type):

$$f_{1T}^{\perp g[U]}(x, \mathbf{k}_{\perp}^2) = \sum_{c=1}^2 C_{G,c}^{[U]} f_{1T}^{\perp g(Ac)}(x, \mathbf{k}_{\perp}^2)$$

[Boer, Lorcé, Pisano, Zhou, Adv. High Energy Phys. (2015) 371396]

• different processes probe different GSFs
[D'Alesio, Murgia, Pisano, Taels, PRD **96** (2017) 3, 036011]

Gluon Sivers function (II)

• first bound on the gluon Sivers function(s) in a TMD scheme and comparison with single-spin asymmetries in $p^{\uparrow}p \rightarrow J/\psi X$ at RHIC [D'Alesio, CF, Murgia, Pisano, Taels, PRD 99 (2019) 3, 036013]

$$f_{1T}^{\perp g(1)}(x) = \int d^2 \mathbf{k}_{\perp} \frac{k_{\perp}^2}{2M^2} f_{1T}^{\perp g}(x, k_{\perp}^2)$$

- extension to NRQCD
 [D'Alesio, Murgia, Pisano, Rajesh, EPJ C 79 (2019) 12, 1029]
 [D'Alesio, Maxia, Murgia, Pisano, Rajesh, PRD 102 (2020) 9, 094011]
- gluon Sivers effect in J/ψ photoproduction at the future EIC [Rajesh, Kishore, Mukherjee, PRD **98** 1 (2018) 014007]

4. Conclusions

Conclusions

- quarkonia are very promising probes for gluon TMDs
- extensive theorethical/phenomenological effort recently (not an exhaustive list):
 - associate production of dilepton and $\Upsilon(J/\psi)$ at the LHC [Lansberg, Pisano, Schlegel, NPB 920 (2017) 192-210]
 - proof of TMD factorization for $pp o \eta_{c,b} \, X$ at low q_T [Echevarria, JHEP 10 (2019) 144]
 - gluon TMDs and NRQCD matrix elements in J/ψ production at EIC [Bacchetta, Boer, Pisano, Taels, EPJC 80 (2020) 1, 72]
 - matching high and low q_T regions for J/ψ production in SIDIS [Boer, D'Alesio, Murgia, Pisano, Taels JHEP 09 (2020) 040]
 - quarkonium TMD fragmentation function in NRQCD [Echevarria, Makris, Scimemi, JHEP 10 (2020) 164]

(and stay safe!)

Thank you