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To be discussed

Magnetic fields in heavy-ion collisions 
□Rough estimates :  

Effects on the QCD phase structures 
□Magnetic catalysis vs Inverse magnetic catalysis 
Effects on the transport / polarisation 
□Chiral Magnetic Effect       Talk by Christakoglou 
□Chiral Separation / Vortical Effect 
Effects on the mesons / baryons 
□Mass spectrum 
□Deformation / polarisation of Skyrmion

eB ≳ Λ2
QCD

2
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Magnetic Fields in 
Heavy-Ion Collisions
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Typical Strengths (before 2007)
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Surface of the neutron star

Surface of the magnetar

. 1012 gauss ⇠ 10�2 MeV2

. 1015 gauss ⇠ 10MeV2

Interior of the magnetar
. 1018 gauss ⇠ 104 MeV2 ⇠ m2

⇡

Not significant as compared to the QCD scale…
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Typical Strengths (after 2007)
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Strongest magnetic field in the (present) Universe
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Strong B and Rapid Rotation
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Chirality n5 probed by B 
Vorticity w coupled to J

B ∼ 1015 T

J ∼ 107 ℏ

103 times larger than the surface 
magnetic field of the magnetar

Largest spin states of nuclei (Yrast states) < 100 ħ 
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Quantifying B experimentally
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FIG. 1: Schematic illustration of how the magnetic field ~B in
a heavy ion collision results in a directed flow, v1, of electric
charge. The collision occurs in the z-direction, meaning that
the longitudinal expansion velocity ~u of the conducting QGP
that is produced in the collision points in the +z (�z) direc-
tion at positive (negative) z. We take the impact parameter
vector to point in the x direction, choosing the nucleus moving
toward positive (negative) z to be located at negative (posi-

tive) x, which is to say taking the magnetic field ~B to point
in the +y direction. The direction of the electric currents due
to the Faraday and Hall e↵ects is shown, as is the direction of
the directed flow of positive charge (dashed) in the case where
the Faraday e↵ect is on balance stronger than the Hall e↵ect.
In some regions of spacetime, the electric current due to the
Hall e↵ect is greater than that due to the Faraday e↵ect; in
other regions, the Faraday-induced current is stronger. The
computation of the directed flow of charged particles is a suit-
ably weighted integral over spacetime, meaning that the final
result for the directed flow arises from a partial cancellation
between the opposing Faraday and Hall e↵ects. In some set-
tings (i.e. for some hadron species, with momenta in some
ranges) the total directed flow for positively charged particles
points as shown. In other settings, it points in the opposite
direction.

sense of how large these correlations may reasonably be
expected to be.

The biggest simplifying assumption that we shall make
is to treat the electrical conductivity of the QGP � as
if it were a constant. We make this assumption only
because it will permit us to do a mostly analytic cal-
culation. In reality, � is certainly temperature depen-
dent: just on dimensional grounds it is expected to be
proportional to the temperature of the plasma. This
means that � should certainly be a function of space
and time as the plasma expands and flows hydrodynam-

ically, with � decreasing as the plasma cools. Further-
more, during the early pre-equilibrium epoch � should
rapidly increase from zero to its equilibrium value. Tak-
ing all this into consideration would require a full, nu-
merical, magnetohydrodynamic analysis, which we leave
to the future. We shall treat � as a constant, unchang-
ing until freezeout. We select a reasonable order-of-
magnitude value of the conductivity � based upon re-
cent lattice calculations [22–26]. It is conventional in
these calculations to quote results for C�1

em�/T , where
Cem ⌘ ( 49 +

1
9 +

1
9 )e

2 = 0.061 in 3-flavor QCD. The quan-
tity C�1

em�/T is weakly temperature dependent between
about 1.2Tc and 2Tc, with Tc ⇠ 170 MeV the tempera-
ture of the crossover from a hadron gas to quark-gluon
plasma. At T = 1.5Tc ⇠ 255 MeV, C�1

em�/T lies between
0.2 and 0.4 [22–26]. We shall set � = 0.023 fm�1 through-
out this paper. This corresponds to C�1

em�/T = 0.3 at
T = 255 MeV.

To do an analytic calculation we need an analytic so-
lution for the hydrodynamic expansion of the conducting
fluid in the absence of any electric currents. We shall
use the analytic solution to relativistic viscous hydrody-
namics for a conformal fluid with the shear viscosity to
entropy density ratio given by ⌘/s = 1/(4⇡) found by
Gubser in 2010 [27]. The solution describes a finite size
plasma produced in a central collision that is obtained
from conformal hydrodynamics by demanding boost in-
variance along the beam (i.e. z) direction, rotational in-
variance around z, and two special conformal invariances
perpendicular to z. This leads to a fluid flow that pre-
serves a SO(1, 1) ⇥ SO(3) ⇥ Z2 subgroup of the full 4-
dimensional conformal group, with the Z2 coming from
invariance under z $ �z. Gubser obtains analytic ex-
pressions for the four-velocity uµ from which one can
construct the local temperature and energy density of
the conformal fluid. As we demonstrate below, we can
choose parameters such that Gubser’s solution yields a
reasonable facsimile of the pion and proton transverse
momentum spectra observed in RHIC and LHC collisions
with 20�30% centrality, corresponding to collisions with
a mean impact parameter between 7 and 8 fm, see e.g.
[28, 29]. Gubser’s hydrodynamic solution is rotationally
invariant around the z-direction and so in reality cannot
be directly applicable to collisions with nonzero impact
parameter. A future numerical analysis should be based
instead upon a numerical solution to (3+1)-dimensional
relativistic hydrodynamics for non-central heavy ion col-
lisions.

We shall assume throughout that the e↵ects of the
magnetic field are small in the sense that the velocity
of charged particles that results (via Hall and Faraday)
from the presence of ~B, call it ~v, is much smaller than the
velocity of the expanding plasma ~u. That is, we require
|~v| ⌧ |~u|. We shall see that this is a good assumption.
Upon making this assumption, and given that our goal
is only an order-of-magnitude estimate of the magnitude
of the charge-dependent directed flow, all we really need
from hydrodynamics is a flow field ~u that is reasonable in

Gursoy-Kharzeev-Rajagopal (2014)

Rapidity 
(and charge) 
dependent 
directed flow
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FIG. 2: Filled circles and star symbols present v1 as a function
of rapidity for D0 and D0 mesons at pT >1.5 GeV/c for 10–
80% centrality Au+Au collisions at

√
sNN = 200 GeV. The

D0 and D0 data points are displaced along the x-axis by ∓
0.019 respectively for clear visibility. The error bars and caps
denote statistical and systematic uncertainties, respectively.
The solid and dot-dashed lines present a linear fit to the data
points for D0 and D0, respectively.

In Fig. 2, the filled circle and star markers present the
rapidity dependence of v1 for the D0 and D0 mesons
with pT > 1.5 GeV/c in 10–80% Au+Au collisions at√
sNN = 200GeV. It is a common practice to present

the strength of v1 via its slope at midrapidity. The D0

(D0) v1-slope (dv1/dy) is calculated by fitting v1(y) with
a linear function constrained to pass through the origin,
as shown by the solid (dot-dashed) line in Fig. 2. The
dv1/dy for D0 and D0 is −0.086± 0.025 (stat.) ± 0.018
(syst.) and −0.075 ± 0.024 (stat.) ± 0.020 (syst.), re-
spectively. Figure 3(a) presents v1(y) averaged over D0

and D0 (denoted 〈v1〉) for pT > 1.5 GeV/c. The dv1/dy
for the averaged D0 mesons using a linear fit is −0.080 ±
0.017 (stat.) ± 0.016 (syst.). The p-value and χ2/NDF
for the linear fit passing through the origin are 0.41 and
2.9/3 respectively. To perform a statistical significance
test for a null hypothesis for the v1 of the averaged D0

and D0, we calculate the χ2 of the measured 〈v1〉 val-
ues set to a constant at zero. The resulting χ2/NDF
and p-value are 14.9/4 and 0.005 respectively, indicating
that the data prefer a linear fit with a non-zero slope.
The D0 v1(y) results are compared to charged kaons,
shown by open square markers in Fig. 3(a). The kaon
v1(y) is measured for pT > 0.2 GeV/c. Note that the
〈pT〉 for kaons is 0.63 ± 0.04 GeV/c while that for D0

mesons is 2.24 ± 0.02 GeV/c in our measured pT accep-
tance for 10–80% Au+Au collisions at

√
sNN = 200GeV.

The dv1/dy of charged kaons, fit using a similar linear
function, is −0.0030 ± 0.0001 (stat.) ± 0.0002 (syst.).
The inset in Fig. 3(a) presents the ratio of the v1 of the

D0 and charged kaons. The absolute value of the D0-
mesons dv1/dy is observed to be about 25 times larger
than that of the kaons with a 3.4σ significance. Moreover,
among the measurements by the STAR collaboration of
v1(y) for eleven particle species in Au+Au collisions at
200 GeV [45], the nominal value of the D0 dv1/dy is the
largest.
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FIG. 3: Panel (a): Solid circles present directed flow
(〈v1(y)〉) for the combined samples of D0 and D0 at pT >
1.5 GeV/c in 10–80% central Au+Au collisions at

√
sNN =

200GeV. Open squares present v1(y) for charged kaons with
pT >0.2 GeV/c. The inset shows the ratio of v1 between the
D0 and charged kaons. The solid and dashed lines show hy-
drodynamic model calculation with an initial electromagnetic
field [32, 35] and AMPT model [47] calculations, respectively.
Panel (b): The solid square markers present the difference in
v1(y) (∆v1) between D0 and D0 for pT >1.5 GeV/c in 10–
80% Au+Au collisions at

√
sNN = 200 GeV. Open triangles

represent ∆v1 between K− and K+. The dotted and solid
lines present a ∆v1 prediction for D0 and D0, reported in
Refs. [33] and [32, 35], respectively. The error bars and caps
denote statistical and systematic uncertainties, respectively.

In hydrodynamic models, the “antiflow” nature of
rapidity-odd directed flow is reproduced by an initial
tilted source [12], where the tilt parameter is obtained
from a fit to v1(y) for charged hadrons. A recent model
calculation [32], where Langevin dynamics for heavy
quarks are combined with a hydrodynamic medium and

STAR (2019)

Charge-dependent directed flow of hadrons and D mesons ALICE Collaboration

the analytic solution of the relativistic viscous hydrodynamic calculations [59] with a constant electrical
conductivity of the QGP. More recent calculations [55] for the charged pion v1, using (2+1)-dimensional
viscous hydrodynamic calculations coupled to a hadronic cascade model iEBE-VISHNU [60], yield an
absolute value of dDv1/dh of similar magnitude as the one measured for charged hadrons, but with the
opposite sign.
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Figure 2: (color online) Top left: v1 of positively (red) and negatively (blue) charged hadrons for the 5–40%
centrality interval in Pb–Pb collisions at

p
sNN = 5.02 TeV. Top right: v1 of D0 (red) and D0 (blue) for the 10–40%

centrality interval in Pb–Pb collisions at
p

sNN = 5.02 TeV. Bottom left and right: Dv1(h) = v1(h+)� v1(h�) and
Dv1(D) = v1(D0)�v1(D0), respectively. Dashed lines represent fits with a linear function.

The D0 and D0 directed flow as a function of pseudorapidity for the 10–40% centrality interval in Pb–Pb
collisions at

p
sNN = 5.02 TeV is shown in the top right panel of Fig. 2. The data suggest a positive slope

for the rapidity dependence of the v1 of D0 and a negative slope for D0, with a significance of about
2s in both cases. The slopes are different from the measurements in Au–Au collisions at

p
sNN = 200

GeV [42], where a negative value is observed for both the D0 and D0. Additionally, the v1 for D0 and D0

mesons with hpTi ⇡ 4.2 GeV/c in the 10–40% centrality interval is about three orders of magnitude
larger than the result obtained for charged particles with hpTi ⇡ 0.7 GeV/c in the 5–40% centrality class.
The different pT intervals used for the charged hadron and D meson v1 measurements are imposed by
the statistical precision of the data, which simultaneously limits the yield of high-pT charged hadrons
and results in low significance of the D0 and D0 meson yield at low-pT. The charged hadron v1 at the
LHC has a weak centrality dependence and changes sign around pT ⇡ 1.5 GeV/c [20]. The differences
in centrality and transverse momentum intervals should not be responsible for the observed difference
between the magnitude of the v1 of charged hadrons and D0 and D0 mesons. The D0 and D0

v1 is an

7

ALICE (2019)

Charm quarks are 
more sensitive to 
the magnetic fields

Interpretations depend on the electric conductivity…
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QCD Electric Conductivity

9Figure 5. Mass dependence of the longitudinal electric conductivity for a single flavor case with
qf = e. In the small mass region the LLLA blows up, while the results at nmax = 1, 2 have
regular behavior at mq ⇠ 0. The red shaded bands are the lattice-QCD estimates. See the text for
discussions.

restriction. In the LLLA the longitudinal and the transverse dynamics of fermions are de-
coupled, and the longitudinal scattering in (1 + 1) dimensions is prohibited for massless
fermions due to the energy-momentum conservation. In this sense, only the LLLA is excep-
tional, and the convergence of the Landau level sum is pretty fast if one goes beyond the
LLLA, as seen in Fig. 5; the nmax = 1 results already give a good approximation close to the
nmax = 2 results. Here, we make one important remark; one might think that �k(mq ! 0)

should diverge even beyond the LLLA because, according to the axial Ward identity, the
chirality in the massless limit is linearly increasing with time regardless the scattering (ex-
cept for the sphaleron transition which is suppressed and negligible at weak coupling). This
argument is mathematically correct, but physically the divergence signifies a hydrodynamic
mode (in a particular hydrodynamic regime; see discussions in Introduction). In fact, as we
closely explained, the conserved quantities such as the energy momentum tensor and the
electric charge constitute the hydrodynamic modes which should be subtracted; otherwise,
they lead to divergence. In the small mass limit the axial charge is approximately conserved,
thus it forms another hydrodynamic mode. We did not explicitly subtract this additional
hydrodynamic mode, but our calculation procedures without coupling to the axial charge
automatically drops out such a hydrodynamic mode. More specifically, out treatment of
the distributions did not allow for the axial charge beyond the linear response regime, so
that the hydrodynamic mode corresponding to the axial charge is excluded.

In Fig. 5 the red shaded bands represent the lattice-QCD estimates. It is interesting
that our results are quantitatively consistent with the lattice-QCD estimates, i.e., the light
red region of 1/3  �/T  1 at T = 1.45 Tc (for the quark charge squared sum Cem = 1

which corresponds to our single flavor with q = e) in Ref. [42] and the darker red region of

– 24 –
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Figure 4. Diagrams of the radiation process with a quark (a1) and a anti-quark (b1), the pair
annihilation (c1), and their inverse processes, (a2), (b2), and (c2).

Since we want to discuss the projection operation, we need to define an inner product.
A natural choice of the inner product of two functions, A = (ap, āp0 , ãk) and B = (bp, b̄p0 , b̃k),
should be

(A, B) :=

Z

p

Wp apbp +

Z

p0
W̄p0 āp0 b̄p0 +

Z

k

W̃k ãk b̃k , (4.17)

where we used a simplified notation for all the phase space sum,
Z

p

:=
X

n,l,c,s,f

Z
d3p

(2⇡)3
1

2"fn
,

Z

k

:=
X

c,s

Z
d3k

(2⇡)3
1

2!k

. (4.18)

With this definition of the inner product the longitudinal electric conductivity (4.16) takes
an extremely simple form as

�k = �(J z, �) (4.19)

from an explicit expression of J z in Eq. (4.12). Now, using the zero eigenvector C and the
inner product as defined above, we introduce a projection operator Q onto functional space
excluding zero eigenvalues as

QO := O �
X

a,b

Ca(C, C)�1
ab

(Cb, O) , (4.20)

where (C, C)�1
ab

is the inverse matrix of (Ca, Cb). We immediately see Q2 = Q and QCa = 0

by construction. Using an alternative expression of the charge density and the enthalpy,
ne = �(T 0z, J z) and E + Pz = �(T 0z, T 0z) [52], we can rewrite Eq. (4.11) into S = QJ z.
Because zero eigenvalues simply give zero, L = LQ trivially follows, and the equation,
L� = S, is equivalent to QLQ� = QS = S, which can be solved as � = QL�1QS. We
eventually obtain,

�k = �(J z, QL�1QS) = �(S, L�1S) = �(S, �) . (4.21)

4.2 Collision terms

The last missing pieces are the collision terms, C[f ], C̄[f ], and C̃[f ]. In this work we
consider the weak coupling expansion with g2 ⌧ 1, and the lowest order contributions
then arise from 1 $ 2 processes. We note that the typical scale of 1 $ 2 processes is
⇠ g2qfB/T 2 which is much larger than the typical scale ⇠ g4 of 2 $ 2 processes under our
hierarchy (2.7).

Such 1 $ 2 processes can be decomposed as

C[f ] = Cq!qg[f ] + Cqg!q[f ] + Cqq̄!g[f ] ,

C̄[f ] = C̄q̄!q̄g[f ] + C̄q̄g!q̄[f ] + C̄qq̄!g[f ] ,

C̃[f ] = C̃g!qq̄[f ] + C̃qg!q[f ] + C̃q̄g!q̄[f ] ,

(4.22)

– 15 –

Fukushima-Hidaka (2017/2019)

Conductivity is not large 
enough to support 
decaying magnetic fields

Bands ~ Lattice QCD by 
H.-T Ding et al. (2011/2016)
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Figure 4: The average polarization PH (where H=L or L) from 20-50% central Au+Au collisions

is plotted as a function of collision energy. The results of the present study (
p

sNN < 40 GeV)

are shown together with those reported earlier6 for 62.4 and 200 GeV collisions, for which only

statistical errors are plotted. Boxes indicate systematic uncertainties.

(⇠ 3.5%).

The fluid vorticity may be estimated from the data using the hydrodynamic relation22

w = kBT
�
P L0 +P L0

�
/~, (3)

where T is the temperature of the fluid at the moment when particles are emitted from it. The

subscripts (L0 and L0) in equation 3 indicate that these polarizations are for “primary” hyperons

emitted directly from the fluid. However, most of the L and L hyperons at these collision ener-

9

ω = ∇ × v Polarization
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Heff = H − ω ⋅ J − μ ⋅ B
Effects of the rotation and the magnetic field

cf. Cranking Hamiltonian in nuclear physics

Thermal equilibrium                    gives polarisation ∼ e−Heff /T

PH =
NH↑ − NH↓

NH↑ + NH↓

PΛ =
ω
2T

+
μΛB

T

PΛ̄ =
ω
2T

−
μΛB

T
Becattini-Karpenko-Lisa-Upsal-Voloshin (2016) This Afternoon!
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Effects on 
the QCD Phase Structures
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QCD Phase Diagram
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Fukushima-Hatsuda (2010) / Fukushima-Sasaki (2013)
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Chiral Phase Transition
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~ 350MeV ~ a few MeVHigh T

↵s(Q
2) =

1

�0 ln(Q2/⇤2
QCD)

All the scales are set by LQCD 
(quark mass, critical T, etc)
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Magnetic Catalysis
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B

Chiral condensate 
(scalar - isoscalar)

L = 1 and S = 1 making J = 0 
more favored by strong B

⌃(B) = ⌃(0)

✓
1 +

ln 2

16⇡2f2
⇡

eB + · · ·
◆

Chiral Perturbation Theory  (Shushpanov-Smilga 1997)

Postive coefficient

Condensate enhanced



Dec. 17, 2020 @ Online (Orsay)

Inverse Magnetic Catalysis

16

Figure 2: Our simulation points on 243 × 6
lattices (blue crosses) and the lines of constant
magnetic field (red dashed lines).

We measure our observables along a grid of points

in the T − Nb plane, as depicted in figure 2. The simu-

lation points are denoted by the blue crosses, while the

eB = const. curves are shown by the red dashed lines.

To perform the interpolation of the measurements along

these lines in a systematic and effective way, we fit a two-

dimensional spline function to the data points. A similar

approach is described in [56] for the fitting of the gradient

of a two-dimensional function. In figure 3 we show the ob-

servables as functions of T and Nb for our Nt = 6 lattices.

We obtain reliable results with good fit qualities; χ2/dof.

being in the range 1.2− 1.8.

We perform simulations over the same physical temperature and magnetic field range for two

smaller lattice spacings at Nt = 8 and Nt = 10, with very similar χ2/dof. values for the spline fits as

above. We use these three lattice spacings (around Tc(0) they correspond roughly to a = 0.2, 0.15 and

0.12 fm) to extrapolate our results to the continuum limit.

Figure 3: The renormalized up quark condensate (upper left panel), its susceptibility (upper right panel), and
the strange susceptibility (lower panel) as functions of T and Nb on our Nt = 6 lattices (note that viewpoints
are different in order to better show the interesting structures in the particular observables). Measurements are
denoted by the blue points, while the red surface is the spline fit to the data. The corresponding fit qualities
are χ2/dof. ≈ 1.8, 1.5 and 1.2, respectively.

– 9 –

Bali et al. (2011)

Magnetic 
   Field

Enhancement 
~ Magnetic Catalysis Tc decreases, while 

the condensate increases

Temperature
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Difficulty in understanding the IMC
Critical T in BCS: Tc / �(T = 0)

hq̄qi in QCD

hq̄qi(T = 0) is increased at finite B

Tc is decreased at finite B
Reconcile?

T

hq̄qi
Needs some other dynamics? 
 (deconfinement / IR meson)
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Chemical Freezeout

values of µB and T are shown in Fig. 1 as functions of center-of-mass energy
per nucleon pair.

We note that, near 10 GeV center of mass energy, the temperature saturates
with increasing beam energy, reaching an asymptotic value of about 160 MeV,
while the baryon chemical potential decreases smoothly.
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Fig. 2. The decoupling temperatures and chemical potentials extracted by Statisti-
cal Model fits to experimental data. The freeze-out points are from Refs. [15] and
[22–24]. The open points are obtained from fits to mid-rapidity whereas the full–
points to 4º data. The inverse triangle at T = 0 indicates the position of normal
nuclear matter. The lines are diÆerent model calculations to quantify these points
[21,25,26]. The shaded lines are drawn to indicate diÆerent regimes in this diagram
(see text).

Plotting these temperature-chemical potential pairs for all available energies
results in a phase diagram-like picture as is illustrated in Fig. 2. In the µB

region from 800 to 400 MeV, as T increases from 50 to 150 MeV, the experi-
mental points rise approximately linearly. In contrast, below µB ª 400 MeV,
the temperature is approximately constant, T ' 160 MeV. The highest col-
lision energies studied to date at RHIC are those for which µB ª 25 MeV.
Also shown on this plot are lines of fixed energy per particle and fixed entropy
density per T 3; also shown is a line of hadron percolation (see below).

These experimental results can be compared to phase transition points com-
puted on the lattice [27,28]. Numerical simulations in lattice QCD can be

3

Experimentally seen 
“Phase Diagram”

Point (T, µB, etc) where 
“inelastic” scattering is 
turned off (due to changes 
in inter-particle distance)

2

interaction gets weaker with larger B, can overcome the
magnetic catalyzing e↵ect (see Ref. [22] for a review
and references therein). Such behavior of the interaction
weakened by stronger B may well be consistent with the
asymptotic freedom of QCD if the relevant scale is given
by

p
eB [23, 24]. In other words, the inverse magnetic

catalysis might be a consequence from the confining sec-
tor in which B eases QCD particles of confining forces.
An alternative scenario called the magnetic inhibition is
rather closed in the chiral sector. If the magnetic field is
large enough, the energy dispersion of ⇡0 is also dimen-
sionally reduced, which would destruct the chiral order
especially at finite T [25]. There are also bag-model anal-
yses of thermodynamic phase transitions with B [26].

Inverse Magnetic Catalysis with the Hadron Resonance

Gas Model: None of these model scenarios has been
fully justified nor falsified and all of them su↵er model-
dependent assumptions. Fortunately, however, we have
another theoretical tool, that is, the hadron resonance
gas (HRG) model, which is free from parameter ambigu-
ities. At zero magnetic field (B = 0) and zero baryon
chemical potential (µB = 0) it has been well tested that
the HRG model reproduces the lattice-QCD data very
nicely up to the crossover temperature where the HRG
thermodynamic quantities such as the pressure, the in-
ternal energy density, and the entropy density blow up
(which is regulated by excluded volume e↵ects [27] that
may be important at high temperatures). Interestingly,
such a simple picture of the HRG model has been verified
also from the success of thermal model fit of experimental
data in the heavy-ion collision. In this way the chemical
freezeout points have been located on the phase diagram
on the µB-T plane (see Ref. [28] for a summary of ther-
mal model implications and Ref. [29] for recent studies
on fluctuations to locate the chemical freezeout points).

It has been known that several thermodynamic condi-
tions imposed with the HRG model can reproduce an
experimentally identified curve of the chemical freeze-
out [30, 31]. Among them a physically reasonable con-
dition is E/N = "/n ' 1 GeV where E (and ") is the
internal energy (density) and N (and n) is the thermal
particle number (density) [30]. Here, N counts not only
baryons but also mesons and anti-particles. Therefore,
the chemical freezeout supposedly occurs when the aver-
age energy per one thermal degrees of freedom (i.e. the
rest mass plus thermally distributed energy ⇠ m + 3

2T
for non-relativistic heavy particles) crosses ⇠ 1 GeV. In
Fig. 1 we show bands (with slanting lines) of the chemical
freezeout using the HRG model in the range of E/N =
0.9 ⇠ 1.0 GeV with and without the magnetic field. We
note that E and N are obtained from the HRG pres-
sure given by a superposition of all hadronic (bosonic and
fermionic) contributions, i.e. p =

P
b db · pb +

P
f df · pf

with the degeneracy db/f and the free-gas pressure pb/f .
For the finite magnetic field the pressures of q-charged

FIG. 1. Chemical freezeout bands drawn in the range of
E/N = 0.9 ⇠ 1.0 GeV with and without the magnetic field.
The bands with slanting lines represent results with the charge
conservation taken into account, while the shaded bands rep-
resent results with µQ = µS = 0 fixed.

s-spin hadrons are changed as

pb/f = ±T
sX

sz=�s

1X

n=0

qB

2⇡

Z
dpz
2⇡

ln(1± e�(E�µiQi)/T ) ,

(1)
with µiQi collectively represents µBQB + µSQS + µQQe

with the baryon charge, the strangeness, and the electric
charge of the particle, respectively, and corresponding
chemical potentials. The energy dispersion relation is
E(pz, n, sz) =

p
p2z + 2|qB|(n+ 1/2� sz). We note that

the divergence from the zero-point oscillation is absorbed
in the renormalized magnetic field in the vacuum [32].
In this work we are interested in hadronic thermody-
namics that is relevant to the freezeout, and thus can
safely discard the magnetic field energy terms. Also,
it would be useful to mention that eB (or qB in the
above expression) is a renormalization free combination.
In our HRG model treatment we have adopted the par-
ticle data group list of particles contained in the package
of THERMUS-V3.0 [33] (we used only the list and wrote
our own numerical codes). We should note that we have
introduced the strangeness and the electric charge chem-
ical potentials, µS and µQ, to implement the conserva-
tion laws of strangeness and electric charge for the entire
system. More specifically, µS and µQ should take finite
values to realize NS = 0 and B/(2Q) = 1.2683 where
B and Q represent the baryon number and the electric
charge number, respectively, which is for cold nuclear
matter (Nproton +Nneutron)/2Nproton and 1.2683 is fixed
for heavy nuclei by the �-equilibrium with the Coulomb
interaction.
The boundaries of the freezeout band (indicated by red

lines for B = 0 and green lines for B 6= 0 in Fig. 1) can
be parametrized as a function of µB in the polynomial
form as Tf(µB) = a� bµ2

B � cµ4
B. Then, we find that the

choice of parameters as listed in Tab. I can give a good fit
for the curves in Fig. 1. In fact, for B = 0, these values

Hadron Resonance Gas
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values of µB and T are shown in Fig. 1 as functions of center-of-mass energy
per nucleon pair.

We note that, near 10 GeV center of mass energy, the temperature saturates
with increasing beam energy, reaching an asymptotic value of about 160 MeV,
while the baryon chemical potential decreases smoothly.
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Fig. 2. The decoupling temperatures and chemical potentials extracted by Statisti-
cal Model fits to experimental data. The freeze-out points are from Refs. [15] and
[22–24]. The open points are obtained from fits to mid-rapidity whereas the full–
points to 4º data. The inverse triangle at T = 0 indicates the position of normal
nuclear matter. The lines are diÆerent model calculations to quantify these points
[21,25,26]. The shaded lines are drawn to indicate diÆerent regimes in this diagram
(see text).

Plotting these temperature-chemical potential pairs for all available energies
results in a phase diagram-like picture as is illustrated in Fig. 2. In the µB

region from 800 to 400 MeV, as T increases from 50 to 150 MeV, the experi-
mental points rise approximately linearly. In contrast, below µB ª 400 MeV,
the temperature is approximately constant, T ' 160 MeV. The highest col-
lision energies studied to date at RHIC are those for which µB ª 25 MeV.
Also shown on this plot are lines of fixed energy per particle and fixed entropy
density per T 3; also shown is a line of hadron percolation (see below).

These experimental results can be compared to phase transition points com-
puted on the lattice [27,28]. Numerical simulations in lattice QCD can be

3

E : internal energy

N : particles + antiparticles

E/N ⇠ 1GeV

Andronic et al. (2010)

Cleymans-Redlich 
  (1998)
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Fukushima-Hidaka (2016)

Slant lines
With conservation 
      of S and Q

Shaded regions
Without conserv. 
      of S and Q

E/N = 0.9 ⇠ 1.0GeV

Inverse Magnetic Catalysis naturally reproduced
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Electric Charge 
    Conservation Significant 

enhancement

Charged hadrons 
favored by B

Fukushima-Hidaka (2016)

cf. 0907.0494 
     (lattice)
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Fujimoto-Fukushima-Hidaka (2020 maybe)

Phase Diagram with Finite Rotation?

 decreases in model studies 
 increases (!?) in lattice QCD (by Braguta et al.)

Tc
Tc

Surface of 
P/PSB = (const.)

 decreases…Tc
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Effects on 
the transport / polarisation
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Axial rotation by q (x)

�S =

Z
dx ✓(x)


@µj

µ
A +

q2e
16⇡2

"µ⌫⇢�Fµ⌫F⇢�

�

=

Z
dx @i✓(x)


�jiA � q2e

2⇡2
"0ijkA0@jAk

�

= �µqB
i

Anomaly induced transport (chiral separation effect)
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ji = � e2

4⇡2
"i0jkA0@jAk = � e2

4⇡2
A0B

i

In electromagnetism a constant vector potential is irrelevant

Aµ ! Aµ + @µ'

A0 can be non-trivial in Euclidean spacetime

i@0 + eA0(x)� µ ! �@4 + ieA4(x)� µ
See: A. Yamamoto, 1210.8250
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A0 $ iA4 ⇠ �µ
j =

e2

4⇡2
µB

Especially if µA for right-handed and -µA for left-handed:

jV =
e2

2⇡2
µABChiral Magnetic Effect

gauged away→anomaly

Chiral Separation Effect jA =
e2

2⇡2
µVB

Especially if µV for right-handed and µV for left-handed:
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Right-handed particles 
Momentum parallel to Spin

Left-handed particles 
Momentum anti-parallel to Spin

Only LLL contributes to the topological current

Chiral Magnetic Effect
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B

E
jOhm = �E

jCME = (E ·B)B / B2

j = (�Ohm + �CME)E �CME / B2

Only this is external

Son-Spivak (2012)Electric conductivity once again!
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Fukushima-Hidaka (2017/2019) Hydro modes lead to 
divergences in the 
Kubo formula.

Hydro modes should 
be projected out.

For small quark mass 
the axial charge should 
be a hydro mode, but 
it is “dropped” in this 
calculation.
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jiA = h ̄�i�5 i = �†R�
i�R + �†L�

i�L
  

qeB

2⇡
⇥ qe

µq

⇡
Density of states 1D charge density

LLL

m

 2eB

Gauge-invariant quark spin operator

Implication to the polarisation measurement?
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Effects on 
the mesons and baryons
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We did not calculate the µ = 3 (i.e., sz = 0) compo-
nents of ρ mesons. It is too difficult to calculate them in
lattice QCD. In the background magnetic field, the π-ρ3
mixing exists even for in the connected diagram. Thus,
the µ = 3 component of a ρ meson is an excited state of
a pion. At least in the weak magnetic field limit, there
is a large number of magnetic-splitting states of the pion
below the energy level of the ρ-meson state. We cannot
calculate such a highly excited state in the lattice QCD
simulation.
For neutral π and ρ mesons, we calculated only the

connected diagram, which is necessary for the QCD in-
equality. While the disconnected diagram is forbidden
in the absence of the magnetic field, it is allowed in the
presence of the magnetic field because the magnetic field
breaks isospin symmetry. We ignored the disconnected
diagram in this simulation. In this sense, our neutral
mesons are not physical ones.

B. Meson masses

We performed the standard mass analysis of ground-
state mesons in lattice QCD. The meson masses were
extracted from the fitting function

GX(t) = AX cosh[mX(t− aNt/2)] (18)

in large t. The lattice volume is N3
s ×Nt = 163×32. The

numerical results are shown in Fig. 1.

 0
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 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

m
 [G

eV
]

eB [GeV2]

π+

ρ+

π0

ρ0

FIG. 1: The meson masses in a magnetic field. The broken
curves are m2

π+(B) = m2

π+(B = 0) + eB and m2

ρ+(B) =

m2

ρ+(B = 0)− eB.

The charged pion mass increases in the magnetic field.
This mass shift can be explained by the naive mass for-
mula m2

π+(B) = m2
π+(B = 0) + eB. As shown in the

figure, this formula well reproduces the present lattice
result in a weak magnetic field. This behavior was also
observed in the full QCD simulation [20]. The lattice

data slightly deviate from this formula in a strong mag-
netic field.
The charged ρ meson mass shows a nontrivial depen-

dence on the magnetic field. When the magnetic field is
weak, the mass is a decreasing function of the magnetic
field. The naive mass formula, m2

ρ+(B) = m2
ρ+(B =

0) − eB, reproduces the lattice data. At eB # 1 GeV2,
the mass has a nonzero minimum. When the magnetic
field is stronger than this value, the mass becomes an
increasing function of the magnetic field. As a conse-
quence, the charged ρ meson is always massive and heav-
ier than the connected neutral pion in the whole range
of the magnetic field. Although the Wilson fermion does
not have the exact positivity, the present lattice result is
consistent with the Vafa-Witten theorem and the QCD
inequality.
The neutral mesons are much more nontrivial. In the

naive mass formula, neutral particles are independent of
a magnetic field. The lattice result suggests, however,
that the neutral meson masses depend on the magnetic
field. This is due to the internal structure of the mesons.
To know how the physical neutral mesons behave in a
magnetic field, we have to take into account the discon-
nected diagram.
When the magnetic field is extremely strong, i.e.,

eB $ 1 GeV2, the masses of all the mesons monoton-
ically increase. This is interpreted as a sign that the
internal quarks obtain the large magnetic-induced mass.
The underlying mechanism is unknown in the present
analysis.

C. Meson condensations

To exclude the possibility of the charged ρ meson con-
densation in lattice QCD, we performed another analysis.
If a meson condensation exists, the ground state becomes
massless and a long-range correlation appears. The cor-
relation function becomes

G′
X(t) = AX cosh[mX(t− aNt/2)] + CX (19)

in large t. If the constant parameter CX is finite in the
limit Nt → ∞, CX corresponds to the squared meson
condensation 〈X〉2, and mX corresponds to the mass of
the first excited state. A similar analysis was performed
in a previous work [16]. However, such a constant term
can be easily generated by a finite-volume artifact. We
must carefully check the finite-volume artifact. In par-
ticular, we need a larger size in the fitting direction, i.e.,
in the t-direction in Eq. (19), because CX coincides 〈X〉2
only in the limit Nt → ∞.
We calculated the correlation functions GX(t) with

three lattice volumes N3
s ×Nt = 163 × 32, 203 × 40 and

243×48, and fitted the results with Eq. (19). The numer-
ical settings are summarized in Table I. In Fig. 2, we show
CX as a function of the lattice volume V = a4N3

sNt. The
magnetic field is fixed at a large value eB # 4.3 GeV2.

Hidaka-Yamamoto (2012)

Disfavors Chernodub’s scenario of “Vacuum Superconductor”



Dec. 17, 2020 @ Online (Orsay)

Lattice QCD

33

Ding-Li-Tomiya-Wang-Zhang (2020)

10

magnetic field to those at zero magnetic field as a function of eB. We found that the masses of all neutral mesons
decrease with increasing eB and has a tendency to saturate at eB ! 2.5 GeV2. By comparing the normalized masses
of π0

u, π
0
d, K

0, ηs, it is obvious that the lighter hadrons are more affected by magnetic field, i.e. in the strongest
magnetic field (eB ! 3.35 GeV2) we have it can be seen that Mη0

s
and Mπ0

u
(Mπ0

d
) are about 70% and 60% of their

values at B=0, respectively. The amount of reduction in ūu and d̄d components of pion mass is roughly consistent
with results presented in SU(2) gauge theory [51] and SU(3) quenched QCD [52] as well as in Nf = 2 + 1 QCD with
stout fermions and physical pion mass in the vacuum [9], while in the former case Mπ0

u
[52] decreases faster while the

latter Mπ0
u
[9] decrease slower with eB compared to our current study. This could be partly due to the fact that the

hadrons with larger masses are less affected by the magnetic field, as in [52] the pion mass in the vacuum is about
415 MeV, while in [9] it is 135 MeV. Due to the presence of a nonzero magnetic field the SUV (2) symmetry is broken
and mixture of the uū and dd̄ flavor contents in the neutral pion could depend on eB [52]. To determine the mixture
coefficient is beyond the scope of our current paper, and for demonstration we nevertheless show in the left plot of
Fig. 5 the ground state mass of π0 extracted from the averaged correlation functions of uū and dd̄ in the pseudo-scalar
channel, i.e. Gπ0 = (Gπ0

u
+Gπ0

d
)/2 assuming that the contribution of the disconnected diagram is negligible and the

mixture coefficients are the same as the B = 0 case [54]. As seen from the plot the ratio for π0 is in between those
for π0

u and π0
d as expected.
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FIG. 5. Left: Masses of π0
u, π

0
d, K, η0s normalized by their corresponding masses at eB=0 as a function of eB. Right: Ratio

Mπ0
u
(|quBu|)/Mπ0

d
(|qdBd|) as a function of |qB|. Here qu and qd stand for the electrical charges of u and d quarks, and Bu and

Bd are different values of B which makes |qB| ≡ |quBu| = |qdBd|.

Since M(B)/M(B = 0) deviates from unity at all the values of eB we simulated the pseudo-scalar mesons studied
here thus cannot be considered as neutral point-like particles whose masses should be independent of eB. Also the
different magnitudes of the mass reduction between π0

u and π0
d may come from the different electric charges of up and

down quarks which again indicates that the inner structure of meson has been revealed. Since the internal structure
of the neutral pion is probed within our current window of magnetic field, we intend to investigate the influence of
the electrical charge of quarks on the mass of neutral pion. We thus show the ratio of Mπ0

u
to Mπ0

d
as a function of

qB instead of eB in the right plot of Fig. 5. We found for the first time to our knowledge that after rescaling x axis
from eB into qB, Mπ0

u
(|quBu|) is almost the same as Mπ0

d
(|qdBu|) at |qB| = |quBu| = |qdBd| and differs at most by

2%. Here qu and qd are the electric charges of u and d quarks, respectively, and Bu,d stands for different values of
B the quark feels to make |qB| the same for up and down quarks. We call this behavior the qB scaling. This again
supports that the internal structure of pions is probed, and may reveal that the dominant degree is represented by
the single quark already starting at the smallest magnetic field we simulated, i.e. eB ≈ 0.05 GeV2. Note that this
smallest value of eB is about the value of M2

π(B = 0) in our simulation.
We now turn to the case of charged pseudo-scalar mesons, i.e. π− and K−, and show the differences of their squared

masses from the case of zero magnetic field, i.e. M2(eB) −M2(eB = 0) in the left plot of Fig. 6 4. We see that for
both π− and K− the differences show a non-monotonous behavior in the magnetic field, i.e. first increase and then
decrease with the magnetic field strength eB and seem to saturate at eB ! 2.5 GeV2. In the small magnetic field, i.e.

4 Due to the parity in eB, the masses of their anti-particles should be the same.

More confinement? (Remember quarks are more massive)
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Chen-Fukushima-Qiu (2020 maybe)

B = 0 B > 0

U = Σ + τaΠa

|Σ |2 + |Π3 |2 = 0.1

|Π1 |2 + |Π2 |2 = 0.1
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Chen-Fukushima-Qiu (2020 maybe)

 winding never loosenedΠ3(SU(2)) = ℤ
Baryons become compact (with prolate deformation)
More confinement?
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Chen-Fukushima-Qiu (2020 maybe)

Interestingly, their energies are distinguished in the presence of B:

Mn = M +
1

8Iz

✓
1 +

�

2⇡

◆2

, Mp = M +
1

8Iz

✓
1� �

2⇡

◆2

, (35)

illustrated in Fig. 6. We conclude neutron becomes heavier than proton by the following mass di↵er-

ence:

�M = Mn �Mp =
�

4⇡Iz
. (36)

As illustrated by Fig. 7, for large B, the mass di↵erence tends to converge to the order of 0.1M .

2 4 6 8 10 12
B/(fπ2a2)

65

70
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80

85

Mn,p/(fπa-1)

Figure 6: Nucleon mass Figure 7: Mass di↵erence

This result is consistent with our intuition that nucleon energy equals MN � µN · B where MN

and µN represnt the mass and magnetic moment of nucleons, and µp > 0 while µN from real data.

We remark on the validity of our result Eq. (35). At first glace, taking � = 0 CAN NOT recover

classical hedgehog results in Witten1983 etc., where Mn,p = M + 3/8Iz. This is because our result

is valid only for strong magentic field. The quantization solely along ⌧3 means the collective modes

moving along ⌧1,2 are restricted to ground states. This takes place only when motions along ⌧1,2 incur

large potential terms that deviate the state drastically away from ⌃0. Therefore, B is required to be

very large to produce such potential.

8

Neutron Mass

Proton Mass
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Summary

Strong magnetic field expected in HI collisions 
□Conductivity is a key quantity (seems to be small) 
□ Flow and polarisation can quantify B 

QCD phase (chiral) structures affected by B 
□Chiral condensate enhanced (catalyzed) 
□ Inverse magnetic catalysis was (is?) a surprise 
Transport / polarisation measurable 
□Chiral magnetic and related effects 
□Axial current is nothing but a spin expectation value 
Still, little is known about B effects on bulk 

thermodynamics and individual mesons/baryons
37


