allow allow

Magnetic Fields and Thermal QCD

Kenji Fukushima

The University of Tokyo

- Polarisation measurements in ee, ep, pp and heavy-ion collisions -

To be discussed

್ರಿಫ್ ನಾತಿದ್ದಾರೆ. ನಾತಿದ್ದಾರೆ, ನಾತಿದ್ದಾರೆ, ನಾತಿದ ನಾತಿದ್ದಾರೆ, ನಾತಿದ್ದಾರೆ, ನಾತಿದ್ದಾರೆ, ನಾತಿದ್ದಾರೆ, ರ **Magnetic fields in heavy-ion collisions** \Box Rough estimates : $eB \gtrsim \Lambda_{\text{OCD}}^2$ **Effects on the QCD phase structures** □ Magnetic catalysis vs Inverse magnetic catalysis **Effects on the transport / polarisation** □ Chiral Magnetic Effect **Talk by Christakoglou** □ Chiral Separation / Vortical Effect **Effects on the mesons / baryons** \square Mass spectrum □ Deformation / polarisation of Skyrmion

Magnetic Fields in Heavy-Ion Collisions

Typical Strengths (before 2007)

Surface of the neutron star $\lesssim 10^{12} \,\mathrm{gauss} \sim 10^{-2} \,\mathrm{MeV}^2$

Surface of the magnetar $\lesssim 10^{15} \, {\rm gauss} \sim 10 \, {\rm MeV}^2$

Interior of the magnetar $\lesssim 10^{18} \, {\rm gauss} \sim 10^4 \, {\rm MeV}^2 \sim m_\pi^2$

Not significant as compared to the QCD scale...

Typical Strengths (after 2007) ಸತ್ಯೆಯಲ್ಲಿ ಮತ್ತೆಯಲ್ಲೇ ಮತ್ತೆಯ ಮತ್ತೆಯಲ್ಲೇ ಮತ್ತೆಯಲ್ಲ -B eB_0 $[1 + (t/t_0)^2]^{3/2}]$ $eB_0 = (47.6 \text{ MeV})^2 \left(\frac{1 \text{ fm}}{h}\right)^2 Z \sinh Y$ $t_0 = \frac{b}{2\sinh V}$ $\lesssim 10^{20} \,\mathrm{gauss} \sim \mathrm{GeV}^2$

Strongest magnetic field in the (present) Universe

Strong B and Rapid Rotation

Alexan Alexan

Chirality n_5 probed by B Vorticity ω coupled to J

 $B \sim 10^{15} \mathrm{T}$

10³ times larger than the surface magnetic field of the magnetar

 $J \sim 10^7 \hbar$

Largest spin states of nuclei (Yrast states) $< 100 \hbar$

Quantifying B experimentally

ALAR, ALAR

Rapidity (and charge) dependent directed flow

Gursoy-Kharzeev-Rajagopal (2014)

Quantifying B experimentally

allan allan allan allan allan allan alla allan allan

STAR (2019)

ALICE (2019)

Interpretations depend on the electric conductivity...

A Polarisation

Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity"

A Polarisation

Effects of the rotation and the magnetic field

$$H_{\rm eff} = H - \boldsymbol{\omega} \cdot \boldsymbol{J} - \boldsymbol{\mu} \cdot \boldsymbol{B}$$

cf. Cranking Hamiltonian in nuclear physics

Thermal equilibrium ~ $e^{-H_{\rm eff}/T}$ gives polarisation

$$P_{H} = \frac{N_{H\uparrow} - N_{H\downarrow}}{N_{H\uparrow} + N_{H\downarrow}} \qquad P_{\Lambda} = \frac{\omega}{2T} + \frac{\mu_{\Lambda}B}{T}$$
$$P_{\bar{\Lambda}} = \frac{\omega}{2T} - \frac{\mu_{\Lambda}B}{T}$$

Becattini-Karpenko-Lisa-Upsal-Voloshin (2016)

This Afternoon!

Effects on the QCD Phase Structures

QCD Phase Diagram

aller aller

Fukushima-Hatsuda (2010) / Fukushima-Sasaki (2013)

Chiral Phase Transition

alera alera

Magnetic Catalysis

12 - 51**2** 15 - 51**2** 15 - 51**2** 15 - 51

Chiral condensate (scalar - isoscalar)

L = 1 and S = 1 making J = 0more favored by strong **B**

Chiral Perturbation Theory (Shushpanov-Smilga 1997)

$$\Sigma(B) = \Sigma(0) \left(1 + \frac{\ln 2}{16\pi^2 f_\pi^2} eB + \cdots \right)$$
Postive coefficient

Inverse Magnetic Catalysis

Inverse Magnetic Catalysis na stend stend stend sten stend stend stend stend stend stend stend **Difficulty in understanding the IMC** Critical T in BCS: $T_c \propto \Delta(T=0)$ $\langle \bar{q}q \rangle$ in QCD **Reconcile?** $\langle \bar{q}q \rangle (T=0)$ is increased at finite B T_c is decreased at finite B $\langle \bar{q}q \rangle$ **Needs some other dynamics?** (deconfinement / IR meson)

algos algos

ALEAN ALEA

Inverse Magnetic Catalysis naturally reproduced

ġŎġĸĊĸġŎġĸĊĸġŎġĸĊĸġŎġĸĊĸġŎġĸĊĸġŎġġġŎġġĸĊĸġŎġĸĊĸġŎġĸĊĸġŎġĸĊĸġŎġĸĊĸġŎġġ

Phase Diagram with Finite Rotation?

- T_c decreases in model studies
- T_c increases (!?) in lattice QCD (by **Braguta** *et al.*)

Fujimoto-Fukushima-Hidaka (2020 maybe)

Dec. 17, 2020 @ Online (Orsay)

Effects on the transport / polarisation

Conserved Current

Axial rotation by $\theta(x)$

$$\delta S = \int dx \,\theta(x) \left[\partial_{\mu} j_{A}^{\mu} + \frac{q_{e}^{2}}{16\pi^{2}} \varepsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \right]$$
$$= \int dx \,\partial_{i}\theta(x) \left[-j_{A}^{i} - \frac{q_{e}^{2}}{2\pi^{2}} \varepsilon^{0ijk} A_{0} \partial_{j} A_{k} \right]$$
$$= -\mu_{q} B^{i}$$

Anomaly induced transport (chiral separation effect)

Conserved Current

alina alina

$$j^i = -\frac{e^2}{4\pi^2} \varepsilon^{i0jk} A_0 \partial_j A_k = -\frac{e^2}{4\pi^2} A_0 B^i$$

In electromagnetism a constant vector potential is irrelevant

$$A_{\mu} \to A_{\mu} + \partial_{\mu}\varphi$$

A₀ can be non-trivial in Euclidean spacetime

$$i\partial_0 + eA_0(x) - \mu \rightarrow -\partial_4 + ieA_4(x) - \mu$$

See: A. Yamamoto, 1210.8250

Conserved Current

algost algost

$$A_0 \leftrightarrow i A_4 \sim -\mu$$
 $j = rac{e^2}{4\pi^2} \mu B$ gauged away-anomaly

Especially if μ_A for right-handed and $-\mu_A$ for left-handed: Chiral Magnetic Effect $\boldsymbol{j}_V = \frac{e^2}{2\pi^2} \mu_A \boldsymbol{B}$

Especially if \mu_V for right-handed and \mu_V for left-handed: Chiral Separation Effect $\boldsymbol{j}_A = \frac{e^2}{2\pi^2} \mu_V \boldsymbol{B}$

Chiral Magnetic Effect

Chiral Magnetic Effect

Right-handed particles Momentum parallel to Spin

Left-handed particles Momentum anti-parallel to Spin

Only LLL contributes to the topological current

Chiral Magnetic Effect

ANDER AND ANDER AND AND AND AND AND AND AND A

$$j_{\rm CME} = (E \cdot B)B \propto B^2$$

 $P = P = P = P$
 $j_{\rm Ohm} = \sigma E$

$$j = (\sigma_{\rm Ohm} + \sigma_{\rm CME})E$$
 $\sigma_{\rm CME} \propto B^2$
Electric conductivity once again! Son-Spivak (2012)

Chiral Magnetic Effect

ANDER ANDER

Fukushima-Hidaka (2017/2019)

Hydro modes lead to divergences in the Kubo formula.

Hydro modes should be projected out.

For small quark mass the axial charge should be a hydro mode, but it is "dropped" in this calculation.

Dec. 17, 2020 @ Online (Orsay)

Spin Polarisation

allow allow

$$j_A^i = \langle \bar{\psi} \gamma^i \gamma_5 \psi \rangle = \phi_R^\dagger \sigma^i \phi_R + \phi_L^\dagger \sigma^i \phi_L$$

Gauge-invariant quark spin operator

Implication to the polarisation measurement?

Effects on the mesons and baryons

Lattice QCD

Hidaka-Yamamoto (2012)

Disfavors Chernodub's scenario of "Vacuum Superconductor"

Lattice QCD

ĦŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗĔŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗŴĿĦŊŗ

Ding-Li-Tomiya-Wang-Zhang (2020)

More confinement? (Remember quarks are more massive)

B = 0

Dec. 17, 2020 @ Online (Orsay)

Baryon (in the Skyrme model)

Chen-Fukushima-Qiu (2020 maybe)

 $\Pi_3(SU(2)) = \mathbb{Z}$ winding never loosened

Baryons become compact (with prolate deformation) More confinement?

Baryon (in the Skyrme model) Chen-Fukushima-Qiu (2020 maybe)

Dec. 17, 2020 @ Online (Orsay)

Summary

Strong magnetic field expected in HI collisions □ Conductivity is a key quantity (seems to be small) \Box Flow and polarisation can quantify *B* **QCD** phase (chiral) structures affected by **B** □ Chiral condensate enhanced (catalyzed) □ Inverse magnetic catalysis was (is?) a surprise **Transport / polarisation measurable** □ Chiral magnetic and related effects □ Axial current is nothing but a spin expectation value Still, little is known about *B* effects on bulk thermodynamics and individual mesons/baryons