

Fitting quarkonium production in NRQCD and LHCb prospects

Andrii Usachov Nikhef

Polarisations measurements in pp, ep and heavy ion collisions virtual Orsay December 16, 2020

Charmonium production vs QCD

QCD probes : charmonium production processes

Hard processes

- e^+e^- production (B-factories)
- Photoproduction
- Hadroproduction (hadron colliders)

Production in decays:

- Higher charmonium states
- b-decays (~5 GeV)
 accessible at B-factories and hadron colliders
- Bottomonium decays (~10 GeV)

 accessible at B-factories and hadron colliders, not many decays
 observed so far
- Z, W decays (~80-90 GeV)
- Higgs decays (~120 GeV)
 - not observed so far

Charmonium hadroproduction in the NRQCD

Cross section factorizes:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle O^{H}(n) \rangle$$

short distance, perturbative

Production mechanisms:

Color Singlet (CS): quantum numbers of $c\bar{c}$ pair and charmonium match

Color Octet (CO): quantum numbers of $c\bar{c}$ pair are different from charmonium

Charmonium hadroproduction in the NRQCD

Cross section factorizes:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle O^{H}(n) \rangle$$

short distance, perturbative

Production mechanisms:

Color Singlet (CS): quantum numbers of $c\bar{c}$ pair and charmonium match

Color Octet (CO): quantum numbers of $c\bar{c}$ pair are different from charmonium

Charmonium hadroproduction in the NRQCD

Cross section factorizes:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle O^{H}(n) \rangle$$

long distance matrix elements (LDMEs), non-perturbative can be obtained from fits to data

- Universality: same LDMEs for different production processes
 (e.g. hadroproduction and b-decays)
- Heavy quark spin-symmetry (HQSS) for LDMEs: Links between the CS and CO LDMEs of different charmonia states

Simultaneous study of J/ ψ and η_c -

Simultaneous study of P-wave charmonia

 $\langle O_1^{\eta_c}({}^{1}S_0) \rangle = \frac{1}{3} \langle O_1^{J/\psi}({}^{3}S_1) \rangle$ $\langle O_8^{\eta_c}({}^{1}S_0) \rangle = \frac{1}{3} \langle O_8^{J/\psi}({}^{3}S_1) \rangle$ $\langle O_8^{\eta_c}({}^{3}S_1) \rangle = \langle O_8^{J/\psi}({}^{1}S_0) \rangle$ $\langle O_8^{\eta_c}({}^{1}P_1) \rangle = 3 \langle O_8^{J/\psi}({}^{3}P_0) \rangle$

*other contributions are small according to the **expansion on** *v*

NRQCD vs experiment: J/\u03c6 hadroproduction and polarization

- **CS** NLO and NNLO* cannot describe prompt production at both LHC and Tevatron
- NRQCD description with dominating CO contribution
 → great success by NRQCD

b) polarization

- CO predicts strong polarization
- **CS** contribution / feed-down effect from χ_c to describe small observed polarization ?

η_c hadroproduction challenges NRQCD

First measurement by LHCb **EPJC 75 (2015) 311** triggered important theory progress η_c LDMEs determined from J/ ψ production using HQSS relations:

LHCb data entirely described by CS contribution, no room for predicted CO contribution

Progress in theoretical description: Han, Ma, Chao, Shao, Meng PRL 114 (2015) 092005

Using constraints from J/ψ and η_c production measurements, upper limit on CO LDME extracted:

 $0 < O_8^{\eta_c} \left(\ {}^3\text{S}_1 \right) < 1.46 \times 10^{-3} GeV^3$

η_c hadroproduction challenges NRQCD

Outcome:

- Progress in data description
- Upper limit on $O^{\eta c}({}^{3}S_{1}{}^{[8]}) \Rightarrow$ new powerful constraint on J/ψ polarization
- Two large CO contributions cancel each other ⇒ hierarchy problem
 - Recent global fit with kt-factorization S. P. Baranov, A. V. Lipatov arXiv:1906.07182

what LHCb can measure?

Charmonium family

LHCb so far: charmonium production without muons

Candidates/(10 MeV)

- $\eta_c(1S)$ production at 7 and 8 TeV EPJC 75 (2015) 31
 - <u>Decay mode</u>: $p\overline{p}$
 - <u>Measurements</u>:
 - Cross-section, total + p_{T} -differential
 - Both prompt and b-decays
 - $\eta_c(1S)$ mass measurement

$\eta_c(1S)$ production at 13 TeV EPJC 80 (2020) 191

- *Decay mode* and *measurements* same as above
- Improved stat. uncertainty
- Two analysis techniques cross-validate each other
- Most precise mass measurement

$\chi_{c0,1,2}$ and $\eta_c(2S)$ production in <u>b-decays</u> EPJC 77 (2017) 609

- <u>Decay mode</u>: φφ
- BRs of $b \rightarrow (c\bar{c})X$ and ratios
- p_{T} -dependence, mass measurements
- *Bonus*: evidence of $B_s^0 \rightarrow \phi \phi \phi$

 $M(\phi\phi)$ [MeV]

Phenomenological fits to J/ ψ and η_c production: prompt + b-decays

- Compare determination of LDMEs from hadroproduction and from b-decays
- Fit three LDMEs to four measurements
- Short distance coefficients for prompt production provided by H.-S. Shao $d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle O^{H}(n) \rangle$
- b-decays prediction: Beneke, Maltoni, Rothstein, PRD 59 (1999) 054003
 - understanding of theoretical uncertainties crucial to make a comparison
- LDMEs compared to

Shao, Ma, Chao et al PRL 114 092005 Baranov. Lipatov arXiv:1904.00400 Butenschoen, Kniehl PRD84 051501

- First simultaneous study of b-decays and prompt production
- Factorization, universality and HQSS can be tested quantitatively?

Phenomenological fits to $\chi_{c0,1,2}$ production: b-decays

 From EPJC 77 (2017) 609 and PDG: $\begin{aligned} & \textbf{Usachov, Kou, Barsuk, LAL-17-051} \\ \mathcal{B}(b \to \chi_{c0}^{direct}X) = (2.74 \pm 0.47 \pm 0.23 \pm 0.94_{\mathcal{B}}) \times 10^{-3} \\ \mathcal{B}(b \to \chi_{c1}^{direct}X) = (2.49 \pm 0.59 \pm 0.23 \pm 0.89_{\mathcal{B}}) \times 10^{-3} \\ \mathcal{B}(b \to \chi_{c2}^{direct}X) = (0.89 \pm 0.20 \pm 0.07 \pm 0.36_{\mathcal{B}}) \times 10^{-3} \\ expectation: \chi_{c2}: \chi_{c1}: \chi_{c0} = 5:3:1 \end{aligned}$

Fit to two measurements of

 Relation between LDMEs from HQSS:

$$O_{1} \equiv \langle O_{1}^{\chi_{c0}}({}^{3}P_{0}) \rangle / m_{c}^{2},$$

$$O_{8} \equiv \langle O_{8}^{\chi_{c0}}({}^{3}S_{1}) \rangle,$$

$$\langle O_{1}^{\chi_{cJ}}({}^{3}P_{J}) \rangle / m_{c}^{2} = (2J+1)O_{1},$$

$$\langle O_{8}^{\chi_{cJ}}({}^{3}S_{1}) \rangle = (2J+1)O_{8}.$$

• Branching fractions calculated in Beneke, Maltoni, Rothstein, PRD 59 054003

Fit to three measurements of branching fractions

LHCb prospects

Search for prompt $\eta_c(2S)$

- Strongly requested by theorists, powerful separation between theory predictions
 Lansberg, Shao, Zhang PLB 786 342
- To be described simultaneously with ψ(2S) production (and polarization)
- Advantage: no feed-downs

- Part of PhD thesis of V. Zhovkovska
- Final states considered: $p\bar{p}$ and $\phi\phi$
- Trigger lines were active during 2018 data taking
- VERY promising upper limit (at least)

bonus: very interesting and unique data (prompt protons) for PID performance study

Prompt charmonium to hadrons in Run 3 and beyond

- Prompt trigger lines are expensive
 - Becomes even more complicated at high intensities
- LHCb is converging with reconstruction algorithms for upgrade
- GPUs will be used for online trigger at Run 3
- Trigger lines to be ported in 2021
 - Available bandwidth is not clear yet
 - Decays considered
 - *pp*̄, φφ
 - Others? $K_S K \pi$?
- RICH reconstruction online (on GPUs) is a key for future

η_b at LHCb?

- Theoretically more clear than η_c (η_b is less relativistic)
- Links between η_b and Υ production observables
- First prediction on production cross-section available! Lansberg, Ozcelik arXiv:2012.00702
- Trigger is much cheaper than for η_c

η_b at LHCb?

- Theoretically more clear than η_c (η_b is less relativistic)
- Links between η_b and Υ production observables
- First prediction on production cross-section available! Lansberg, Ozcelik arXiv:2012.00702
- Trigger is much cheaper than for η_c

$\eta_b(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

but

- Small production cross-section
- No exclusive BR measured
- Decays considered:

mode	BR
γγ	$O(10^{-4})$
(many) charged hadrons	$O(10^{-6})$
jets?	0(1)

 $\begin{array}{ll} \mbox{Mass} \ m=9398.7\pm2.0 \ \mbox{MeV} & (\mbox{S}=1.5) \\ \mbox{Full width} \ \Gamma=10^{+5}_{-4} \ \mbox{MeV} \end{array}$

$\eta_b(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
hadrons	seen		_
$3h^+3h^-$	not seen		4672
$2h^+2h^-$	not seen		4689
$4h^{+}4h^{-}$	not seen		4648
$\gamma\gamma$	not seen		4699
$\mu^+\mu^-$	$< 9 \times 10^{-3}$	90%	4698
$\tau^+ \tau^-$	<8 %	90%	4350

Summary

- Important measurements on charmonium production come from using charmonium decays to hadrons at LHCb
 - Access to $\eta_c(1S, 2S)$ and $\chi_{c0,1,2}$; others in future?
 - $\eta_c(1S)$ is measured, $\chi_{c0,1,2}$ measured only for b-decays
 - $\eta_c(2S)$ is on the way
- The NRQCD description is still puzzling when considering LDME universality
 - First simultaneous fit of prompt + b-decays production of J/ ψ and η_c
 - Prediction on b-decays has to be revisited
- Studies are limited by trigger bandwidth
 - Way out: RICH reconstruction online
- η_b at LHCb must have