

Cooling

A.Jeremie

Message de Ryszard le 6 avril

You can do some preparations and then we would be able start MARTA with my remote assistance.

- 1. Connect MARTA Local Box to the Experiment. Open MV5 and MV6.
- 2. Make a vacuum and then load CO2 (1,5 kg for the volume of MARTA + max 0,3 kg for the volume of Experiment).
- 3. Plug in the electric power and verify, if MARTA starts with no problems and alarms indicated on the HMI.
- 4. Then you can start MARTA. If connected do the internet, I can assist remotely (if you grant me the remote access to MARTA, I will be able to take over the control) or please wait until we will do it during the visit.

- The CERN cooling group (Bart in particular) has become increasingly worried, that the ITk community is not looking carefully enough at the ITk-internal parts of the cooling system
- In particular there are reviews ongoing or have been passed already for local supports and services, which have not discussed cooling issues in much depth
- (I agree with that observation)
- Bart therefore has been pushing for a review of the ITk cooling
- However, I think we can't have multiple reviews of the same item
- We have discussed this with Claudia and the plan is now that we handle cooling similarly to grounding & shielding
 - This means that we will produce a document which outlines for each subsystem
 - The cooling requirements
 - The specifications and design
 - A prediction of the performance, if possible by prototype verification
 - This will be done together with the CERN cooling group, which will look at our inputs critically
 - This document will need to be approved by the Steering group, subsystems will need to conform to the content of that document
 - I have promised that we will produce such a document June/July

AUW

A.Jeremie LAPP

Pixel Thermal & Cooling Requirements

- Pixel on-detector thermal and cooling requirements defined in Local Supports & Global Mechanics specifications:
 - Local Supports: EDMS 1534572
 - Pixel Global Mechanics1: EDMS 2016196

Thermal Performance

(prevent runaway & guarantee lpixel<10nA)

	TFM [°C·cm ² ·W ⁻¹]				
Layer	Design	Total			
0	20.5	28.5			
1	27.8	37.2			
2	27.3	36.5			
3	31.3	42.4			
4	33.6	45.9			

Under revision to account for new R_{L0} and guarantee a minimum temperature in the periphery of the FE chips

UNIVERSITÉ DE GENÈVE

* To be updated to include more detail on cooling requirements following recommendations from SPR Follow-up

Thermo-fluidic Performance

Cooling Loop Design Parameters				
Maximum Temperature @ PP1 (°C)	-40			
T _{max, inlet evaporator} (°C)	-35			
ΔP _{PP1→PP1} (bar)	10			
ΔP _{evaporator + exhaust} (bar)	≤2bar			
x _{max, exhaust} (%)	33			
Nominal Power Dissipation (W/cm ²)	0.7			
Not conservative everywhere (see next slides)				

OB Local Supports: Power Dissipation

Pixel Power Consumption model summarised in EDMS 2027500 (M. Hamer)

OB Local Support		Local Support Power Dissipation [W]			Difference with Nominal Case [%]	
Local Support Type & Flavour	Number of Modules in LS	Nominal Case (LS Specs – 0.7W/cm ²)	High Power Scenario	20% Current Headroom	High Power Scenario	20% Current Headroom
Longeron L2	36	417.6	502.5	457.0	20.3	9.4
Longeron L3	36	417.6	454.2	438.2	8.8	4.9
Longeron L4	36	417.6	435.4	413.4	4.3	-1.0
Inclined Half Ring L2	16	185.6	226.2	203.8	21.9	9.8
Inclined Half Ring L3	22	255.2	272.2	265.2 / ,	6.7	3.9
Inclined Half Ring L4	28	324.8	326.6	316.4	0.6	-2.6

We will qualify the OB design for 120% of the nominal loads (see prototyping section)

Pipe Extensions & Manifolds: Flat Region

- Longerons from a given half layer are split in A&C sides and manifold together at PP1
 - Individual inlet capillary and exhaust pipe for each longeron

