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introduction

Top Quark Physics

Top quark discovered in pairs (strong interaction) in 1995.
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introduction

Single top quark production @ 1.96TeV

s-channel (tb)

σNLO = 1.12 ± 0.04 pb(*)

t-channel (tqb)

σNLO = 2.34 ± 0.12 pb (*)

(*) N. Kidonakis, Phys. Rev. D 74, 114012 (2006), Mt=170GeV
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motivation

Motivation - Measure the Cross Section

A cross section allows direct measurement of |Vtb| for the first time
(more later).

The s-channel and t-channel cross sections are sensitive
to different new physics
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motivation

Motivation - Top Quark Spin

Top decays before it can hadronize (no top jets)

V-A nature of weak interaction should mean 100% polarized top
quarks.

First chance to measure the polarization of a bare quark!
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motivation

Motivation - Looks Like Higgs

This looks a lot like single top!

One of the most promising Tevatron channels for Higgs discovery
is like single top with 1/10 the cross section.

Approach to measure Higgs is tested on single top. It is also an
important background.

As soon as we discover it, somebody tries to get rid of it....
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introducing DØ

The Fermilab Tevatron

Run II began in
March 2001

Proton-antiproton
collisions at
1.96TeV

Luminosity up to
3.5× 1032cm−2s−1

Int. Luminosity
(recorded)
>6.1 fb−1
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introducing DØ

The DØ Cartoon
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introducing DØ

The Collaboration
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single top history

Finding Single Top is a Challenge!
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single top history

Search History (Wine+Cheese - Gerber)
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analysis strategy

General Analysis Strategy (2006 or 2009)

Design triggers and loose pre-selections maximizing signal
acceptance.

Build background model from MC and data sources.

Normalize background model to data.

Check data/background model agreement in many variables.

b-tag.

Check data/background model agreement in many variables.

Apply MV discriminants.

Check discriminants in data control samples.

Use ensembles of pseudo-data to test for method bias.

Cross sections measured using binned likelihood calculation for
signal+background to data.
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analysis strategy

Improvements Since 2006
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analysis strategy

Event Selection Improvements

Signature

isolated
lepton

/ET

2-4 jets

at least 1
b-jet

Logical OR of many triggers (was l+jets)

Leading jet acceptance extended to |η| < 3.4
(was 2.5)

Non-leading jet PT cut lowered to 15GeV (was
20)

Muon PT cut 15GeV (was 18GeV)

Loosened b-tag cut for 2-tag case

New HT ,/ETcuts

Signal acceptance increased by 18% compared to
2006!

Dugan O’Neil (SFU and CEA Saclay) Observation of Single Top Sept 25, 2009 15 / 63



analysis strategy

The Background Model

Signal modeled using SINGLETOP+PYTHIA. Based on
COMPHEP, reproduces NLO distributions.

W+jets, Z+jets and ttbar from ALPGEN+PYTHIA:

MLM parton-jet matching to avoid double-counting final states.
η(jets),∆φ(jet1, jet2),∆η(jet1, jet2) corrected in W+jets samples
to match data.

QCD multijets taken from data - misidentified leptons.

Dibosons modeled using PYTHIA.

Normalization of W+jets and multijets performed by iterative fits
to data in three sensitive variables before tagging

Ndata
pretag − NMC

bkgd = SW +jetsN
MC
W +jets + SmultijetN

data
multijet
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analysis strategy

Event Selection - Agreement Before Tagging

S:B = 1:259
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analysis strategy

B Tagging

Separate b-jets from light-quark and
gluon jets to reject most W+jets
background.

Two operating points

TIGHT
(εb = 40%,εc = 9%,εl = 0.4% )
LOOSE
(εb = 50%,εc = 14%,εl = 1.5% )

DØ uses a NN with 7 input variables based on secondary vertex
and impact parameter.

Define exclusive samples: 1T, 0 L and 2L
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analysis strategy

Event Selection - Agreement After Tagging
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analysis strategy

Systematic Uncertainties
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MV techniques

Multivariate Analysis Techniques

Selection cuts are not sufficient to “see” single top. We perform three
independent analyses using multivariate techniques:

1 Boosted Decision Trees (BDTs)

2 Matrix Elements Method (ME)

3 Bayesian Neural Networks (BNN)

and then combine their outputs in a super-BNN at the end.
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MV techniques

Decision Trees

Train

Start with all events (first
node)

For each variable, find the
splitting value with best
separation between children
(best cut).

select best variable and cut
and produce Failed and
Passed branches

Repeat recursively on each
node

Stop when improvement stops
or when too few events left.
Terminal node = leaf.
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MV techniques

Splitting a node
Impurity i(t)

maximum for equal mix of signal and background

symmetric in psignal and pbackground

minimal for signal only or background only

strictly concave ⇒ reward purer nodes

Decrease of impurity for split s of
node t into children tL and tR :
∆i(s, t) = i(t)− pL · i(tL)− pR · i(tR)

Aim: find split s∗ such that:

∆i(s∗, t) = max
s∈{splits}

∆i(s, t)

Maximizing ∆i(s, t) ≡ minimizing
overall tree impurity

Examples

Gini = 1−
∑

i=s,b p2
i = 2sb

(s+b)2

entropy = −
∑

i=s,b pi log pi
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MV techniques

Decision Trees

Measure and Apply

Take trained tree and
run on independent
simulated sample,
determine purities.

Apply to Data

Should see enhanced
separation (signal right,
background left)

Could cut on output
and measure, or use
whole distribution to
measure.
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MV techniques

Decision Trees - Boosting

c© R. Schwienhorst
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MV techniques

Decision Trees - Boosting
Boosting

Recent technique to improve
performance of a weak
classifier

Recently used on DTs by
GLAST and MiniBooNE

Basic principal on DT:

train a tree Tk

Tk+1 = modify(Tk)

AdaBoost algorithm

Adaptive boosting

Check which events are
misclassified by Tk

Derive tree weight αk

Increase weight of
misclassified events

Train again to build Tk+1

Boosted result of event i :
T (i) =

∑Ntree
n=1 αkTk(i)

Averaging dilutes piecewise nature of DT

Usually improves performance

Ref: Freund and Schapire, “Experiments with a new boosting algorithm”, in Machine

Learning: Proceedings of the Thirteenth International Conference, pp 148-156 (1996)
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MV techniques

Decision Trees - Application to this Analysis

DT Choices

1/3 of MC for training

Adaboost β = 0.2

Boosting cycles = 50

Signal leaf if purity > 0.5

Minimum leaf size = 100
events

Same total weight to signal
and background to start

Goodness of split - Gini factor

Analysis Strategy

Train 24 separate trees: (Run
IIa,Run IIb) x (e,µ) x (2,3,4
jets) x (1,2 tags)

For each signal train against
the sum of backgrounds
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MV techniques

Decision Trees - Powerful Variables
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MV techniques

Decision Trees - Output Transformation
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MV techniques

Matrix Element Technique

A matrix elements analysis takes a very different approach:

Use the 4-vectors of all reconstructed leptons and jets

Use matrix elements of main signal and background diagrams to
compute an event probability density for signal and background
hypotheses.

Goal: calculate a discriminant:

Ds(~x) = P(S |~x) =
PSignal(~x)

PSignal(~x) + PBackground(~x)

Define PSignal as properly normalized differential cross section

PSignal(~x) =
1

σS
dσS(~x) σS =

∫
dσS(~x)

Shared technology with mass measurement in tt̄(eg. transfer
functions)
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MV techniques

Bayesian Neural Network

Neural networks are non-linear
functions defined by weights at the
nodes.

Instead of choosing one set of
weights, a BNN find posterior
probability density over all possible
weights.

Averaging over many networks
weighted by the probability of each
network given the training data. Less
prone to overtraining

For this analysis use highest-ranked
18-28 variables in each channel.
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measuring the cross section

Measuring the Cross Section

Cross sections are measured
by building a Bayesian
posterior probability density.

Shape and normalization
systematics treated as
nuisance parameters

Correlations between
uncertainties properly
accounted for

Flat prior in signal cross
section

The cross section is given by
the peak of the posterior, the
width containing 68% is the
uncertainty.
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measuring the cross section

Ensemble Testing

To verify that all of this machinery is
working properly we test with many
sets of pseudo-data.

Wonderful tool to test analysis
methods! Run DØ experiment 1000s
of times!

Generated ensembles include:
1 0-signal ensemble (s + t σ = 0pb)
2 SM ensemble (s + t σ = 3.46pb)
3 Several other test values

Each analysis tests linearity of
“response” to single top.
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measuring the cross section

Ensemble Results
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measuring the cross section

Significance/Sensitivity Determination

We use our 0-signal ensemble to determine a significance for each
measurement.
Expected p-value

The fraction of 0-signal pseudo-datasets in which we measure at least
3.46pb.

Observed p-value

The fraction of 0-signal pseudo-datasets in which we measure at least
the measured cross section.
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measuring the cross section

Data Cross-check samples

We define a W-enriched data sample and a ttbar-enriched sample
(almost no signal) in which to test the agreement.
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measuring the cross section

Data Cross-check samples
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measuring the cross section

Individual MV Outputs
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measuring the cross section

Individual Results

Dugan O’Neil (SFU and CEA Saclay) Observation of Single Top Sept 25, 2009 39 / 63



measuring the cross section

Individual Significances
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measuring the cross section

Combination of DØ Results
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measuring the cross section

Combination of DØ Results
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measuring the cross section

Combination of DØ Results
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measuring the cross section

t-channel Alone

It is interesting to attempt to
separate the t-channel from
the s-channel to search for
new physics.

The eta distribution of the
light quark jet (left) is one
distinguishing feature between
s- and t-channel.

DØ has taken the observation
analysis and retrained the
discriminants to separate the
two sources.
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measuring the cross section

t-channel Alone

Do a 2D measurement, no
restriction on relative s and t
channel cross sections.

Integrate along s-channel axis
to get t-channel measurement
and vice versa:

σt = 3.14+0.94
−0.80pb

σs = 1.05± 0.81pb

Consistent with SM, 4.8σ
excess on t-channel alone.
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measuring the cross section

DØ Future Projections
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Vtb

CKM Matrix Element Vtb

Direct access to Vtb

VCKM =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


Weak interaction eigenstates are not mass eigenstates

In SM: top must decay to a W and d , s or b quark

V 2
td + V 2

ts + V 2
tb = 1

constraints on Vtd and Vts : Vtb > 0.998

New physics that couples to the top quark:

V 2
td + V 2

ts + V 2
tb < 1

no constraint on Vtb
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Vtb

Measuring |Vtb|

Given that we now have a measurement of the single top cross
section, we can make the first direct meassurement of |Vtb|.
Use the same infrastructure as cross section measurement but
make a posterior in |Vtb|2.

Caveat: assume SM top quark decays.

Additional theoretical errors are needed (see hep-ph/0408049)
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Vtb

Measuring or Limiting |Vtb|2
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combining with CDF

Combining with CDF - Cross Section

Same Bayesian method used to combine experiments as was used
to combine channels within an experiment.
Common systematics are assume 100% correlated, the rest are
assumed uncorrelated.
Cross section uncertainty improves from 22% to 19%. Two
experiments are compatible at the 1.6 sigma level.
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combining with CDF

Combining with CDF - |Vtb|
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fin

Summary

Observation of Single Top Quark Production!!

Single top has finally been observed at the 5 sigma level by both
Dzero and CDF.
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extra slides

BACKUP SLIDES

BACKUP SLIDES
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extra slides

Event Displays I

Dugan O’Neil (SFU and CEA Saclay) Observation of Single Top Sept 25, 2009 54 / 63



extra slides

Event Displays II
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extra slides

Event Displays III
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extra slides

Kinematics in the Signal Region
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extra slides

Yields in More Detail
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extra slides

W+jets HF Scaling Factor
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extra slides

Systematic Uncertainties
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extra slides

Evidence Cross-Check
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extra slides

More on Vtb
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extra slides

CDF+DØ Combination Uncertainties
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