Observation of Single Top Quarks at DØ

Dugan O'Neil

Simon Fraser University and CEA Saclay

LAPP September 25, 2009

Outline

- Introduction/Motivation
- Single Top at the Tevatron
- From Evidence to Observation
- Background model, Event selection, etc.
- Cross Section Measurement
- Isolating the t-Channel
- Measuring $|V_{tb}|$
- Combination with CDF
- Summary

Top Quark Physics

Top quark discovered in pairs (strong interaction) in 1995.

introduction

Single top quark production @ 1.96TeV

(*) N. Kidonakis, Phys. Rev. D 74, 114012 (2006), M_t=170GeV

Motivation - Measure the Cross Section

A cross section allows direct measurement of $|\rm V_{tb}|$ for the first time (more later).

Motivation - Measure the Cross Section

A cross section allows direct measurement of $|\rm V_{tb}|$ for the first time (more later). The s-channel and t-channel cross sections are sensitive to different new physics

Motivation - Top Quark Spin

- Top decays before it can hadronize (no top jets)
- V-A nature of weak interaction should mean 100% polarized top quarks.
- First chance to measure the polarization of a bare quark!

motivation

Motivation - Looks Like Higgs

- This looks a lot like single top!
- One of the most promising Tevatron channels for Higgs discovery is like single top with 1/10 the cross section.
- Approach to measure Higgs is tested on single top. It is also an important background.
- As soon as we discover it, somebody tries to get rid of it....

The Fermilab Tevatron

- Run II began in March 2001
- Proton-antiproton collisions at 1.96TeV
- Luminosity up to $3.5 \times 10^{32} cm^{-2} s^{-1}$
- Int. Luminosity (recorded) $>6.1 \text{ fb}^{-1}$

The DØ Cartoon

The Collaboration

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

Finding Single Top is a Challenge!

Search History (Wine+Cheese - Gerber)

DØ

Search:	PRD 63, 031101 (2000)
Search:	PLB 517, 282 (2001)
Search:	PLB 622, 265 (2005)
- W':	PLB 641, 423 (2006)
Search:	PRD 75, 092007 (2007)
Evidence:	PRL 98, 181802 (2007)
FCNC:	PRL 99, 191802 (2007)
- W':	PRL 100, 211802 (2007
Evidence:	PRD 78, 012005 (2008)
Wtb:	PRL 101, 221801 (2008
Wtb:	PRL 102, 092002 (2009
· H ⁺ :	(PRL) arXiv:0807.0859
Observation:	(PRL) arXiv:0903.085
CDF	
Search:	PRD 65, 091102 (2002)
- W'	PRL 90, 081802 (2003)
Search:	PRD 69, 052003 (2004)
Search:	PRD 71, 012005 (2005)
Evidence:	PRL 101, 252001 (2008
FCNC:	(PRL) arXiv:0812.3400
- W':	(PRL) arXiv:0902.3276
Observation:	(PRL) arXiv:0903.088

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

General Analysis Strategy (2006 or 2009)

- Design triggers and loose pre-selections maximizing signal acceptance.
- Build background model from MC and data sources.
- Normalize background model to data.
- Check data/background model agreement in many variables.
- b-tag.
- Check data/background model agreement in many variables.
- Apply MV discriminants.
- Check discriminants in data control samples.
- Use ensembles of pseudo-data to test for method bias.
- Cross sections measured using binned likelihood calculation for signal+background to data.

Improvements Since 2006

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

Event Selection Improvements

Signature

- isolated lepton
- ∉_⊤
- 2-4 jets
- at least 1
 b-jet

- Logical OR of many triggers (was I+jets)
- Leading jet acceptance extended to $|\eta| < 3.4$ (was 2.5)
- Non-leading jet P_T cut lowered to 15GeV (was 20)
- Muon P_T cut 15GeV (was 18GeV)
- Loosened b-tag cut for 2-tag case
- New H_T , $\not\!\!E_T$ cuts

Observation of Single Top

The Background Model

- Signal modeled using SINGLETOP+PYTHIA. Based on COMPHEP, reproduces NLO distributions.
- W+jets, Z+jets and ttbar from ALPGEN+PYTHIA:
 - MLM parton-jet matching to avoid double-counting final states.
 - η(jets), Δφ(jet1, jet2), Δη(jet1, jet2) corrected in W+jets samples to match data.
- QCD multijets taken from data misidentified leptons.
- Dibosons modeled using PYTHIA.
- Normalization of W+jets and multijets performed by iterative fits to data in three sensitive variables before tagging

$$N_{pretag}^{data} - N_{bkgd}^{MC} = S_{W+jets} N_{W+jets}^{MC} + S_{multijet} N_{multijet}^{data}$$

Event Selection - Agreement Before Tagging

Event Yields in 2.3 fb ⁻¹ of DØ Data			
e,µ, 2,3,4-jets, pretag			
<i>tb</i> + <i>tqb</i> 444			
W+jets	98,444		
Z+jets, dibosons 8,631			
<i>tī</i> pairs 1,895			
Multijets 5,798			
Total background 114,777			
Data 114,777			

DØ Single Top 2.3 fb⁻¹ Signals and Backgrounds (All channels combined, before *b*-tagging)

S:B = 1:259

B Tagging

- Separate b-jets from light-quark and gluon jets to reject most W+jets background.
- Two operating points
 - TIGHT $(\epsilon_b=40\%,\epsilon_c=9\%,\epsilon_l=0.4\%\)$
 - LOOSE $(\epsilon_b = 50\%, \epsilon_c = 14\%, \epsilon_l = 1.5\%)$

- DØ uses a NN with 7 input variables based on secondary vertex and impact parameter.
- Define exclusive samples: 1T, 0 L and 2L

Event Selection - Agreement After Tagging

Event Yields in 2.3 fb ⁻¹ of DØ Data			
e,µ, 2,3,4-jets, 1,2-tags combined			
<i>tb</i> + <i>tqb</i> 223 ± 30			
W+jets 2,647 ± 241			
Z+jets, dibosons 340 ± 61			
<i>tī</i> pairs 1,142 ± 168			
Multijets 300 ± 52			
Total prediction 4,652 ± 352			
Data 4,519			

DØ Single Top 2.3 fb⁻¹ Signals and Backgrounds (All channels combined, after *b*-tagging)

Dugan O'Neil (SFU and CEA Saclay)

Systematic Uncertainties

Systematic Uncertainties

Ranked from Largest to Smallest Effect on Single Top Cross Section

DØ 2.3 fb⁻¹

Larger terms

<i>b</i> -ID tag-rate functions (includes shape variations)	(2.1–7.0)% (1-tag) (9.0–11.4)% (2-tags)	
Jet energy scale (includes shape variations)	(1.1–13.1)% (signal) (0.1–2.1)% (bkgd)	
W+jets heavy-flavor correction	13.7%	
Integrated luminosity	6.1%	
Jet energy resolution	4.0%	
Initial- and final-state radiation	(0.6–12.6)%	
b-jet fragmentation	2.0%	
$t\bar{t}$ pairs theory cross section	12.7%	
Lepton identification	2.5%	
Wbb/Wcc correction ratio	5%	
Primary vertex selection	1.4%	

Systematic Uncertainties

Ranked from Largest to Smallest Effect on Single Top Cross Section

DØ 2.3 fb⁻¹

Smaller terms			
Monte Carlo statistics	(0.5–16.0)%		
Jet fragmentation	(0.7-4.0)%		
Branching fractions	1.5%		
Z+jets heavy-flavor correction	13.7%		
Jet reconstruction and identification	1.0%		
Instantaneous luminosity correction	1.0%		
Parton distribution functions (signal)	3.0%		
Z+jets theory cross sections	5.8%		
W+jets and multijets normalization to data	(1.8–3.9)% (W+jets) (30–54)% (multijets)		
Diboson theory cross sections	5.8%		
Alpgen W+jets shape corrections	shape only		
Trigger	5%		

Dugan O'Neil (SFU and CEA Saclay)

Multivariate Analysis Techniques

Selection cuts are not sufficient to "see" single top. We perform three independent analyses using multivariate techniques:

- Boosted Decision Trees (BDTs)
- Matrix Elements Method (ME)
- Bayesian Neural Networks (BNN)

and then combine their outputs in a super-BNN at the end.

Decision Trees

Train

- Start with all events (first node)
- For each variable, find the splitting value with best separation between children (best cut).
- select best variable and cut and produce Failed and Passed branches
- Repeat recursively on each node
- Stop when improvement stops or when too few events left. Terminal node = leaf.

Dugan O'Neil (SFU and CEA Saclay)

Splitting a node Impurity i(t)

• maximum for equal mix of signal and background

- symmetric in p_{signal} and p_{background}
- minimal for signal only or background only
- strictly concave \Rightarrow reward purer nodes
- Decrease of impurity for split s of node t into children t_L and t_R : Δi(s, t) = i(t) - p_L · i(t_L) - p_R · i(t_R)

• Aim: find split s* such that:

$$\Delta i(s^*,t) = \max_{s \in \{\text{splits}\}} \Delta i(s,t)$$

Maximizing ∆i(s, t) ≡ minimizing overall tree impurity

Examples

$$Gini = 1 - \sum_{i=s,b} p_i^2 = \frac{2sb}{(s+b)^2}$$

entropy = $-\sum_{i=s,b} p_i \log p_i$

Decision Trees

Measure and Apply

- Take trained tree and run on independent simulated sample, determine purities.
- Apply to Data
- Should see enhanced separation (signal right, background left)
- Could cut on output and measure, or use whole distribution to measure.

Decision Trees - Boosting

Decision Trees - Boosting

Boosting

- Recent technique to improve performance of a weak classifier
- Recently used on DTs by GLAST and MiniBooNE
- Basic principal on DT:
 - train a tree T_k
 - $T_{k+1} = \text{modify}(T_k)$

AdaBoost algorithm

- Adaptive boosting
- Check which events are misclassified by *T_k*
- Derive tree weight α_k
- Increase weight of misclassified events
- Train again to build T_{k+1}
- Boosted result of event *i*: $T(i) = \sum_{n=1}^{N_{\text{tree}}} \alpha_k T_k(i)$

• Averaging dilutes piecewise nature of DT

• Usually improves performance

Ref: Freund and Schapire, "Experiments with a new boosting algorithm", in *Machine Learning: Proceedings of the Thirteenth International Conference*, pp 148-156 (1996)

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

Decision Trees - Application to this Analysis

DT Choices

- 1/3 of MC for training
- Adaboost $\beta = 0.2$
- Boosting cycles = 50
- Signal leaf if purity > 0.5
- Minimum leaf size = 100 events
- Same total weight to signal and background to start
- Goodness of split Gini factor

Analysis Strategy

- Train 24 separate trees: (Run IIa,Run IIb) \times (e, μ) \times (2,3,4 jets) \times (1,2 tags)
- For each signal train against the sum of backgrounds

Decision Trees - Powerful Variables

Best Variables to Separate Single Top from W+Jets

DØ 2.3 fb⁻¹ Analysis

DO 2.015	, analyoio
Object kinematics	¢τ
	p ₇ (jet2)
	ρ ₇ ^{rel} (jet1,tag-μ)
	E(light1)
Event kinematics	M(jet1,jet2)
	<i>M</i> ₇ (W)
	H_{T} (lepton, $\#_{T}$,jet1,jet2)
	H ₇ (jet1,jet2)
	H_{τ} (lepton, $\not{\!\! E}_{\tau}$)
Jet reconstruction	Width _e (jet2)
	Width _n (jet2)
Top quark reconstruction	M _{top} (W,tag1)
	$\Delta M_{\rm top}^{\rm min}$
	M _{top} (W,tag1,S2)
Angular correlations	cos(light1,lepton) _{btaggedtop}
	Δφ(lepton,∉ ₇)
	Q(lepton) x η(light1)

Best Variables to Separate Single Top from Top Pairs DØ 2.3 fb⁻¹ Analysis **Object kinematics** pT(notbest2) pT(jet4) pT(light2) Event kinematics M(alljets-tag1) Centrality(alliets) M(alljets-best1) $H_{\tau}(alljets-tag1)$ $H_{\tau}(\text{lepton}, \#_{\tau}, \text{alljets})$ M(alljets) Jet reconstruction Width_n(jet4) Width_d(jet4) Width_d(jet2) cos(lepton_{btaggedtop}, Angular correlations btaggedtop_{CMframe}) Q(lepton) x n(light1) ΔR (jet1, jet2)

MV techniques

Decision Trees - Output Transformation

Sept 25, 2009 29 / 63

Matrix Element Technique

A matrix elements analysis takes a very different approach:

- Use the 4-vectors of all reconstructed leptons and jets
- Use matrix elements of main signal and background diagrams to compute an event probability density for signal and background hypotheses.
- Goal: calculate a discriminant:

$$D_{s}(\vec{x}) = P(S|\vec{x}) = \frac{P_{Signal}(\vec{x})}{P_{Signal}(\vec{x}) + P_{Background}(\vec{x})}$$

• Define P_{Signal} as properly normalized differential cross section

$$P_{Signal}(\vec{x}) = \frac{1}{\sigma_S} d\sigma_S(\vec{x}) \quad \sigma_S = \int d\sigma_S(\vec{x})$$

• Shared technology with mass measurement in $t\bar{t}(eg. transfer functions)$

Dugan O'Neil (SFU and CEA Saclay)

Bayesian Neural Network

- Neural networks are non-linear functions defined by weights at the nodes.
- Instead of choosing one set of weights, a BNN find posterior probability density over all possible weights.
- Averaging over many networks weighted by the probability of each network given the training data. Less prone to overtraining
- For this analysis use highest-ranked 18-28 variables in each channel.

Measuring the Cross Section

- Cross sections are measured by building a Bayesian posterior probability density.
- Shape and normalization systematics treated as nuisance parameters
- Correlations between uncertainties properly accounted for
- Flat prior in signal cross section
- The cross section is given by the peak of the posterior, the width containing 68% is the uncertainty.

Ensemble Testing

- To verify that all of this machinery is working properly we test with many sets of pseudo-data.
- Wonderful tool to test analysis methods! Run DØ experiment 1000s of times!
- Generated ensembles include:
 - 0-signal ensemble $(s + t \sigma = 0pb)$
 - 2 SM ensemble $(s + t \sigma = 3.46pb)$
 - Several other test values
- Each analysis tests linearity of "response" to single top.

Ensemble Results

Significance/Sensitivity Determination

We use our 0-signal ensemble to determine a significance for each measurement.

Expected p-value

The fraction of 0-signal pseudo-datasets in which we measure at least 3.46pb.

Observed p-value

The fraction of 0-signal pseudo-datasets in which we measure at least the measured cross section.

Data Cross-check samples

We define a W-enriched data sample and a ttbar-enriched sample (almost no signal) in which to test the agreement.

W+Jets Cross-Check Sample

tt-Pairs Cross-Check Sample

Data Cross-check samples

Pretagged Cross-Check Sample

W+Jets Cross-Check Sample

tt-Pairs Cross-Check Sample

Individual MV Outputs

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

Individual Results

DØ 2.3 fb ⁻¹ Single Top Results				
Single Top Significance				
Analysis Method	Cross Section	Expected	Measured	
Boosted Decision Trees	3.74 ^{+0.95} _{-0.79} pb	4.3 σ	4.6 σ	
Bayesian Neural Networks	4.70 ^{+1.18} _{-0.93} pb	4.1 σ	5.4 σ	
Matrix Elements	$4.30 \ ^{+0.99}_{-1.20} \ { m pb}$	4.1 σ	4.9 σ	

Individual Significances

Dugan O'Neil (SFU and CEA Saclay)

Combination of DØ Results

Combination of DØ Results

Combination of DØ Results

t-channel Alone

- It is interesting to attempt to separate the t-channel from the s-channel to search for new physics.
- The eta distribution of the light quark jet (left) is one distinguishing feature between s- and t-channel.
- DØ has taken the observation analysis and retrained the discriminants to separate the two sources.

t-channel Alone

- Do a 2D measurement, no restriction on relative s and t channel cross sections.
- Integrate along s-channel axis to get t-channel measurement and vice versa:

$$\sigma_t = 3.14^{+0.94}_{-0.80} pb$$

$$\sigma_s = 1.05 \pm 0.81 pb$$

• Consistent with SM, 4.8σ excess on t-channel alone.

DØ Future Projections

CKM Matrix Element V_{tb}

Direct access to V_{tb}

$$V_{CKM} = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

 V_{tb}

- Weak interaction eigenstates are not mass eigenstates
- In SM: top must decay to a W and d, s or b quark

•
$$V_{td}^2 + V_{ts}^2 + V_{tb}^2 = 1$$

- constraints on V_{td} and V_{ts} : $V_{tb} > 0.998$
- New physics that couples to the top quark:

•
$$V_{td}^2 + V_{ts}^2 + V_{tb}^2 < 1$$

• no constraint on V_{tb}

Measuring $|V_{tb}|$

• Given that we now have a measurement of the single top cross section, we can make the first direct meassurement of $|\rm V_{tb}|.$

V_{tb}

- Use the same infrastructure as cross section measurement but make a posterior in $|\rm V_{tb}|^2.$
- Caveat: assume SM top quark decays.
- Additional theoretical errors are needed (see hep-ph/0408049)

Additional Systematic Uncertainties for the <i>V_{tb}</i> Measurement		
DØ 2.3 fb ⁻¹		
For the tb+tqb theory cross section		
Top quark mass	4.2%	
Parton distribution functions 3.0%		
Factorization scale 2.4%		
Strong coupling α_s 0.5%		

Measuring or Limiting $|V_{tb}|^2$

 V_{tb}

Combining with CDF - Cross Section

- Same Bayesian method used to combine experiments as was used to combine channels within an experiment.
- Common systematics are assume 100% correlated, the rest are assumed uncorrelated.
- Cross section uncertainty improves from 22% to 19%. Two experiments are compatible at the 1.6 sigma level.

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

Combining with CDF - $|V_{tb}|$

Observation of Single Top Quark Production!!

• Single top has finally been observed at the 5 sigma level by both Dzero and CDF.

fin

Single Top	Signal Significance		CKM Matrix Element V.	
Cross Section	Expected	Observed		
DØ (2.3 fb ⁻¹) March 2009 PRL 103, 092001 (2009) (m _{tep} = 170 GeV)				
3.94 ± 0.88 pb	4.5 σ	5.0 σ	$ig V_{tb} f_1^L ig = 1.07 \pm 0.12$ $ig V_{tb} ig > 0.78$ at 95% CL	
CDF (3.2, 2.1 fb ⁻¹) March 2009 PRL 103, 092002 (2009) (m ₁₀₀ = 175 GeV)				
2.3 $^{+0.6}_{-0.5}$ pb	>5.9 σ	5.0 σ	$\begin{vmatrix} V_{tb} f_1^L \end{vmatrix} = 0.91 \pm 0.13$ $\begin{vmatrix} V_{tb} \end{vmatrix} > 0.71$ at 95% CL	
DØ & CDF combined August 2009 FERMILAB-TM-2440-E (<i>m</i> _{top} = 170 GeV)				
2.76 ^{+0.58} _{-0.47} pb			$\begin{vmatrix} V_{tb} f_1^L \end{vmatrix} = 0.88 \pm 0.07$ $\begin{vmatrix} V_{tb} \end{vmatrix} > 0.77$ at 95% CL	

extra slides

BACKUP SLIDES

BACKUP SLIDES

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

Sept 25, 2009 53 / 63

Event Displays I

DØ Experiment Event Display

Single Top Quark Candidate Event, 2.3 fb⁻¹ Analysis

Event Displays II

DØ Experiment Event Display Single Top Quark Candidate Event, 2.3 fb⁻¹ Analysis

Event Displays III

DØ Experiment Event Display

Single Top Quark Candidate Event, 2.3 fb⁻¹ Analysis

Sept 25, 2009 56 / 63

Dugan O'Neil (SFU and CEA Saclay)

extra slides

Kinematics in the Signal Region

Yields in More Detail

Event Yields in 2.3 fb ⁻¹ of DØ Data						
Source	Source 2 jets 3 jets 4 jets					
s-channel tb	62 ± 9	24 ± 4	7 ± 2			
t-channel tqb	77 ± 10	39 ± 6	14 ± 3			
W+bb	678 ± 104	254 ± 39	73 ± 11			
W+cc	303 ± 48	130 ± 21	42 ± 7			
W+cj	435 ± 27	113 ± 7	24 ± 2			
W+jj	413 ± 26	140 ± 9	41 ± 3			
Z+jets	141 ± 33	54 ± 14	17 ± 5			
Dibosons	89 ± 11	32 ± 5	9 ± 2			
$t\bar{t} \rightarrow \ell \ell$	149 ± 23	105 ± 16	32 ± 6			
$t\bar{t} \rightarrow \ell + jets$	72 ± 13	331 ± 51	452 ± 66			
Multijets	196 ± 50	73 ± 17	30 ± 6			
Total prediction	2,615 ± 192	1,294 ± 107	742 ± 80			
Data	2,579	1,216	724			

Event Yields in 2.3 fb ⁻¹ of DØ Data					
Source 2 jets 3 jets 4 jets					
s-channel tb	62 ± 9	24 ± 4	7 ± 2		
t-channel tqb	77 ± 10	39 ± 6	14 ± 3		
W+bb	678 ± 104	254 ± 39	73 ± 11		
W+cc	303 ± 48	130 ± 21	42 ± 7		
W+cj	435 ± 27	113 ± 7	24 ± 2		
W+jj	413 ± 26	140 ± 9	41 ± 3		
Z+jets	141 ± 33	54 ± 14	17 ± 5		
Dibosons	89 ± 11	32 ± 5	9 ± 2		
$t\bar{t} \rightarrow \ell \ell$	149 ± 23	105 ± 16	32 ± 6		
$t\bar{t} \rightarrow \ell + jets$	72 ± 13	331 ± 51	452 ± 66		
Multijets	196 ± 50	73 ± 17	30 ± 6		
Total prediction	2,615 ± 192	1,294 ± 107	742 ± 80		
Data	2,579	1,216	724		

W+jets HF Scaling Factor

- W + heavy flavor normalized to theory (MCFM-NLO)
 - 1.47 (Wbb,Wcc), 1.38 (Wcj)
- Additional empirical correction
 - derived from two-jet data and simulation: includes zero-tag events
 - -0.95 ± 0.13 (Wbb, Wcc)

p17+p20 e+µ channel

100

M_r(W) [GeV]

1 b-tag

2 iets

150

- Uncertainties considered
 - Data statistics ± 9%
 - $\pm 40\%$ single top cross section $\rightarrow \pm 7\%$ in SF
 - $\pm 10\%$ on the Wcj theory SF $\rightarrow \pm 8\%$ in SF
 - Additional \pm 10% Wbb/Wcc \rightarrow \pm 5% in SF

Event Yield [counts/10GeV]

100

200 DØ

50

DØ

Event Yield [counts/10GeV]

600

400

200

50

p17+p20 e+µ channel

100

M,(W) [GeV]

1 b-tag

3 jets

150

Systematic Uncertainties

extra slides

Evidence Cross-Check

Measured single top cross sections using the 2009 and the 2006 decision trees on 5,000 pseudo-datasets generated from the 2009 Run IIa e+jets samples.

The red star shows the measurements in real data: 4.2 pb from the 2006 analysis and 2.9 pb from the 2009 analysis. This 1.3 pb shift is not uncommon, as seen from the width of the distribution from the negulo-datasets

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

More on V_{tb}

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \bigvee_{tb} \left\{ \gamma^{\mu} \left[f_1^L P_L + f_1^R P_R \right] - \frac{i\sigma^{\mu\nu}}{M_W} \left(p_t - p_b \right)_{\nu} \left[f_2^L P_L + f_2^R P_R \right] \right\}$$

Dugan O'Neil (SFU and CEA Saclay)

Observation of Single Top

Sept 25, 2009 62 / 63

CDF+DØ Combination Uncertainties

Systematic Uncertainty	CDF		D0		Correlated between
					the two experiments
	Rate	Shape	Rate	Shape	
Luminosity from detector	4.5%		4.6%		
Luminosity from cross section	4.0%		4.0%		•
Signal modeling	2.2 - 19.5%	•	3.5 - 13.6%		•
Background from MC	12.1 - 12.4%	•	15.1 %		•
Background from data	17 - 40%	•	13.7 - 54%	•	
Detector modeling	0-9%	•	7.1~%		
b-tagging	0 - 29%	•	2 - 30%	•	
dJES	0-16%	•	0.1 - 13.1%	•	

Dugan O'Neil (SFU and CEA Saclay)