Journées de physique ATLAS - France 12 septembre 2007, Seignosse

Le canal H $\rightarrow \gamma \gamma (1/2)$

Iro Koletsou LAL-Orsay

...de la part des groupes français qui travaillent sur le $H \rightarrow \gamma \gamma$

Sommaire

- Introduction
- comparaison avec CMS
- Effort de validation analyse commune
- 3 Isolation des photons
- 4 Bruit de fond
- 5 Determination du vertex
- Higgs Time
- 7 Etude des conversions
- 8 Résolution en masse
- 9 Fitting
- Signification statistique

Introduction

Rappel:

canal très important pour 114<m_H<145 GeV

•m_H>114 GeV LEP direct •m_H<189 GeV 95% CL (corrections radiatives) •m_H<~140 GeV SUSY

Défis du canal:
BR ~0.2% et S/B_{irreducible} ~5%
acceptance ~0.5, efficacité 0.8²

Mais:

Canal très "propre"

Une des meilleures résolutions en masse (~ 1.4 GeV) ³

Analyse $H \rightarrow \gamma \gamma$ standard

- Sélectionner les événements avec ≥ 2 photons identifiés (coupures ID, voir la suite)
- 2. Appliquer les coupures fiducielles: η dans [0,1.37] \cup [1.52,2.37]
- Demander pour le premier et le deuxième photon de l'événement P_T¹>40 et P_T²>25 GeV (coupures d'analyse)

Points clés de l'analyse Bruit de fond:

- irréductible (born, box, bremsstrahlung)
- ~125 fb/GeV (après coupure d'acceptance et efficacité des γ)
- \bigcirc utilisation de variables discriminantes (cos θ^*, P_T)
- analyse VBF, production associée Z, W (voir Bertrand Brelier)
- réductible
- $\checkmark \sigma(jj)=2*10^{6*}\sigma(\gamma\gamma) \& \sigma(\gamma j)=8*10^{2*}\sigma(\gamma\gamma)$
- *rejection puissante des jets pour que bdf(red)<<bdf(irred)*
- meilleure rejection des jets que CMS grâce a la segmentation très fine du calorimètre électromagnétique

Signal:

- bonne résolution en masse (∝ 1.4 GeV)
- la avoir une bonne résolution en énergie
- CMS a une résolution en énergie excellente (mais dégradation au cas de conversion)
- la meilleure résolution en Z_{vertex} possible
- Omeilleurs que CMS: ne peut pas mesurer le Z_{vertex} dans le 5 calorimètre

✓ production NLO avec ResBos pour Born et Box
 ✓ LO*K=1.7 pour γ-jets et jet-jets ATL-PHYS-INT-2006-002
 CMS (TDR)

✓ production LO avec Pythia et application de facteur K:

Born	Box	Brem	γ-jet	jet-jet
1.5	1.2	1.72	1	1

Résultats pour ATLAS après coupures d'analyse

	Box	Born	Brem	γ -jets	jet-jets	total	
	29	95		29	5	158	
	Résultats pour CMS après coupures d'analyse						
_	Box	Born	Brem	γ -jets	jet-jets	total	Drell Yan
	31	44	40	34	27	176	2

fb⁻¹GeV⁻¹ at 120 GeV

CMS: analyse optimisée

- grandes variations de $\sigma(m_H)$, dues à l'excellente résolution en énergie du calorimètre em
- Séparer en 6 catégories selon les variables de « shower shape » et leur position au calorimètre (bar-bar ou bar-end/end-end)
- ⇒ Pour m_H=120 GeV, amélioration de S/√B jusqu'a ~70%
 - Entraîner un NN à partir de variables cinématiques seulement, pour chaque catégorie séparément
- ⇒ Pour m_H=120 GeV, amélioration de S/√B jusqu'a ~65%

CMS NOTE - 2006/112

Remarque: en ce moment les S/v/B de deux expériences sont au même niveau

Effort de validation dans le cadre des notes CSC (release 12.0.6)

- Se mettre d'accord sur la définition exacte des "photons"
- Catégorie 1: photons reconstruits sans trace associée (pour AOD: PhotonContainer)
- Catégorie 2: photons reconstruits avec deux traces associées et conversion reconstruite (ConvTrackMatch pour objet Electron (AOD) or objet egamma)
- Catégorie 3: photons reconstruits avec une trace associée, sans hit au Blayer (voir JF Marchand)
 - et de chaque coupure
- Coupures ID: ∃≥2 photons qui passent les coupures ID (voir la suite)
- Coupures fiducielles appliquées au middle
- Coupures d'analyse: PT1>40 GeV, PT2>25 GeV
- Commencer par les mêmes événements, utiliser différentiels algorithmes (avec AOD, CBNTAA et EventView) et avoir le même 'cut flow' et les mêmes résolutions en masse (voir JF Marchand)

9

«Cut flow»

Coupures ID + fiducielles	Coupures d'analyse				
Catégorie 1 seulement					
43,84%	39,43%				
Catégories 1 + 2					
50,92%	45,87%				
Catégories 1 + 2 + 3					
54,37%	48,62%				

Nombres a multiplier avec l'efficacité du filtre d'événements $H \rightarrow \gamma \gamma$: 75%

10

L'effort de validation et le travail en commun nous a permit de construire / améliorer des tools communs d'analyse: HggEvent

- sélectionne les événements qui vont participer a l'analyse
- ConversionFlagTool
- identifie les conversions et trouve le vertex de la conversion (voir talk JF Marchand)
- PrimaryVertexFinder
- ✓ sélectionne le vertex du Higgs si il y a du pile-up
- HggFitter
- utilise les deux tools précédents et calcule la direction des photons, sert aussi comme input au PrimaryVertexFinder
- PhotonCorrectionTool
- re-calcule les η(photon) et P_T (photon)
 Autres tools communs d'analyse:
 - TrackIsolationTool
 - isolation avec le tracker (voir la suite)
 - PhotonLogLikelihood
 - choisi les photons a partir de variables discriminatives

Isolation calorimétrique

Pistes suivies pour améliorer E_T cone:

- 1. ΣE_T cellules dans calo em +HAD dans $\Delta r < 0.3$ «photon»
- 2. Supprimer les cellules ou ou $E_T < 2 * \sigma$ (bruit électronique)
- 3. Rapport ΣE_T cellules / E_T «photon» plutôt que ΣE_T cellules

Combiner avec l'isolation de traces

Travail en cours sur les ESD...(Caroline Collard)

Bruit de fond

Pythia sans facteur k (ordre supérieur: à voir page 6)
 reconstruction avec géométrie misalignée
 ici seulement coupures ID, fudicielles et d'analyse - sans isolation*

Bdf après isolation (de traces)

signal	Rej. ~1.8%
γγ background	Rej. ~1.3%
e ⁺ e ⁻ background	Rej. ~9.8%
γ–jet background	Rej. ~35.6%

- Direction du photon \rightarrow fit global qui utilise:
- η à chacun de trois couches
- Z=0 avec σ =56 mm
 - $Z_{vertex de conversion}$ au cas de conversion a 2 traces
- ✓ Z0_{trace} au cas de conversion à 1 trace
- Zvertex, calculé par le détecteur de traces et sélectionné parmi les vertex à haute luminosité

Pointing: résolution en Z_{vertex}

barrel-barrel $\sigma(Z)=13.3$

barrel-end $\sigma(Z)$ = 19.7

end-end σ (Z)= 39.7

résolution en Z_{vertex} au cas de conversion reconstruite

σ(Z)=0.31 mm

(résolution à l'ordre du détecteur de traces)

à suivre...

... voir présentation de Jean-François Marchand

Transparents de backup

Bdf irreductible dominant pour les catégories à grand R9
 Bdf reductible dominant pour les catégories à petit R9

⇒CMS: Amélioration (sans systématiques)

l	analyse		1 cat.	4 cat.	12 cat.
l	fb-1 pour avoir 5 σ	27.4	24.5	21.3	19.3

Mais quand on inclue les systématiques l'amélioration devient plus importante:

analyse		1 cat.	4 cat.	12 cat.
fb-1 pour avoir 5 σ	48.7	39.5	26.0	22.8

Parce que la séparation en catégories fait maintenant en plus que l'erreur systématique totale baisse:

 L'erreur resterait la même après la séparation en N_{cat} catégories, si l'erreur de chaque catégorie augmentait en moyenne d'un facteur √N_{cat}
 Et ici on a: σ_{systematique}

^Ostatistique,

Osystematique *1

Résultats similaires pour les deux expériences
 Tous les deux pourraient arriver à une découverte dans la première année de run