

Mesure de la luminosité dans ATLAS

Patrick PUZO Laboratoire de l'Accélérateur Linéaire - Orsay

 $L = \frac{\dot{N}}{\dot{N}}$ $\sigma A \varepsilon$

Mesure absolue de luminosité \Leftrightarrow calcul de σ ou utilisation d'une valeur de σ connue pour un processus déterminé

But : 2-3% sur la luminosité absolue à haute luminosité

Il n'existe pas dans ATLAS de détecteur donnant L de manière absolue à 2-3% à haute luminosité

Plan

- I. Méthodes auxquelles on aurait pu penser
- II. Mesure relative de luminosité
- III. Mesure absolue de luminosité

P. Puzo

Paramètres machine

Paramètres machine

$$L = \frac{f_{rev}}{4 \pi} \sum_{i} F_{ci} \frac{N_i^1 N_i^2}{\sigma_{x,i}^* \sigma_{y,i}^*} \quad \text{avec} \quad F_{ci} = \frac{1}{\sqrt{1 + (\theta_c \sigma_z / (2 \sigma_{y,i}^*))^2}}$$

Limitations

- \bullet Mesure des courants individuels $N_i{}^j$
- Extrapolation au IP des mesures de dimensions effectuées ailleurs dans l'anneau (effet faisceau-faisceau)
- Connaissance de l'angle de croisement $\theta_{\rm c}$

 $\Rightarrow \Delta L/L$ de l'ordre de 20%

Avec des conditions particulières (peu de paquets, faisceau plus gros, pas d'angle de croisement), on peut peut-être espérer $\Delta L/L = 5-10\%$

P. Puzo

Production de W et Z

- Section efficace élevée
- L'incertitude actuelle sur les PDF atteint 8-10% $\Rightarrow \Delta L/L$ de l'ordre de 10%

L'erreur sur les PDF diminuera sans doute avec les données du LHC

 $\Rightarrow \Delta L/L$ de l'ordre de 3-5% après un certain (!) temps

Production de paires de muons

- Section efficace connue à environ 1%
- Section efficace faible (1 pb pour des muons dans le barrel avec $p_{\rm T}$ > 3 GeV/c

 $\Rightarrow \approx 40$ événements par fill à 10³³ cm⁻²s⁻¹

р

⇒ En supposant qu'on contrôle les efficacités du trigger et du détecteur à 1-2%, peut donner $\Delta L/L$ = 2-3% avec 10 fb⁻¹. Pas utilisable avant la haute luminosité

Stratégie pour déterminer la luminosité absolue dans ATLAS

Luminosité absolue : ALFA (Absolute Luminosity For Atlas) Luminosité relative : LUCID (Luminosity Using Cerenkov Integrated Detector)

- 1. Mesurer la luminosité absolue avec ALFA dans des conditions optimales
- 2. Calibrer LUCID en même temps
- 3. Utiliser la linéarité de LUCID pour obtenir la luminosité absolue aux autres points de fonctionnement, en particulier à haute luminosité

LABORATOIRE DE L'ACCELÉRATEUR LINÉAIRE

LUCID = LUminosity measurement using

Cerenkov Integrating Detector

- Evenements inélastiques (5.5 < |η| < 6.1)
 - 168 tubes en Al (\emptyset = 1.5cm), remplis de C_4F_{10} , pointant vers le FP
 - Rayonnement Cherenkov
 - Signal lu par rad hard PMT
 - Basé sur le *Cherenkov Luminosity Counter* de CDF

• Insensible à la plupart du bruit de basse énergie (seuil Cherenkov à 2.8 GeV pour les pions et 10 MeV pour les électrons)

• L'idée de base est d'utiliser le nombre de particules traversant LUCID comme une mesure de la luminosité

• Simulations montrent une parfaite linéarité entre le nombre de particules détectées dans LUCID et la luminosité

<u>Principe d'ALFA</u> : Diffusion à des *t* si petits que la section efficace devient sensible à la diffusion Coulombienne ⇒ Mesure absolue de luminosité

P. Puzo

Contraintes sur le faisceau

- Très faible angle de diffusion
 - \checkmark Coulomb amplitude = strong amplitude pour -t $\approx 6.5 \ 10^{-4} \ GeV^2$
 - \checkmark Ceci correspond à un angle de diffusion $\theta \approx 3.5~\mu rad$ (120 μrad pour UA4)
- Très basse emittance : ϵ_{N} = 1 μm rad
- Pas d'angle de croisement
- Faible divergence

 $[\]Rightarrow$ Basse luminosité (10²⁷ cm⁻²s⁻¹)

Optique et contraintes sur le faisceau

- Optique « Parallel to point focusing » :
 - ✓ Transforme un angle de diffusion au IP en une position verticale sur le détecteur
- Il existe une une optique qui permet ceci sans nouveau hardware
 - ✓ Détecteur entre Q6 et Q7
 - ✓ Q4 en polarité inverse
- β* = 2625 m
- Compatible avec TOTEM (β* = 1540 m)
 ✓ TOTEM et ALFA tourneront/doivent
 - tourner ensemble

P. Puzo

Où placer le détecteur ?

Fmittance

normalisée

Simulation basée sur : • La diffusion élastique pp (PYTHIA 6.4 modifié)

- Transport des protons (MADX)
- Simulation du détecteur

Pour une optique « parallel to point », t_{min} varie comme :

$$f_{\min} = \frac{p^2}{\gamma} n_d^2 \varepsilon_N / \beta^*$$

Distance minimale d'approche du faisceau (en unité de dimension du faisceau)

P. Puzo

 n_{d} et ϵ_{N} doivent être optimisés pour obtenir t_{min} = 6.5 $10^{-4}~GeV^{2}$

⁴⁰ مرجع vertical aperture 20 -t=0.1 GeV2 10 t=0.01 GeV² -t=0.001 GeV² 0 -10 -20 -30 $t_{min} \approx 6.5 \ 10^{-4} \ GeV^2$ -40 -30 -20 10 20 30 -10 -40 0 40 x [mm]

Impacts sur ALFA d'événements (5 $10^{-5} < -t < 0.2 \text{ GeV}^2$). Les bandes correspondent à ± 20%

Emittance

<u>Déjà obtenu dans le SPS</u>

- 0.9 μm rad en H et 1.1 μm rad en V pour 7 1010 protons par paquet
- + 0.6-0.7 μm rad en H et V pour 0.5 10^{10} protons par paquet

Emittance normalisée de 1.0 μm rad pour quelques 10¹⁰ protons par paquet est probablement OK dans le SPS. Peut-on la transmettre au LHC ?
Dans le LHC, l'amortissement dû au rayonnement synchrotron aidera à diminuer l'emittance

Collimation

• Avant d'approcher le détecteur, il faut fermer les collimateurs

P. Puzo

- Une trop faible ouverture des collimateurs provoque une augmentation de l'emittance N
- La limite de l'instabilité varie comme :

$$\frac{N_p}{n_g^3 \, \varepsilon_N^{5/2}}$$

 \Rightarrow Très difficile de prévoir a priori les paramètres N_p, n_d, n_g et ϵ_N

P. Puzo

Halo du faisceau

- Inefficacité du « betatron cleaning system »
- Inefficacité du « momentum cleaning system »
- Interaction avec le gaz résiduel

Taux de bruit de fond estimés sur le détecteur (43 paquets de 10¹⁰ p chacun)

Optique et contraintes sur le faisceau

Optique et contraintes sur le faisceau Structure du faisceau pour ALFA

- On doit collecter 10⁶ événements pour être limité par les systématiques
- Une semaine de prise de données à 10^{27} cm⁻²s⁻¹
- Pour réduire la luminosité de 10^{34} cm⁻²s⁻¹ at 10^{27} cm⁻²s⁻¹ :
 - \checkmark Facteur 1000 de la valeur de β

✓ Facteur 100 en opérant avec 43 paquets au lieu de 2800 (pas d'angle de croisement et d'offset vertical)

 \checkmark Facteur 10 avec des paquets de 10¹⁰ protons au lieu de 10¹¹ protons

⇒ Le point de fonctionnement de l'accélérateur sera assez éloigné du point de fonctionnement nominal. On espère que cela ne sera pas trop problématique pour l'instrumentation

Optique et contraintes sur le faisceau

Précision sur les paramètres du faisceau

On doit connaître dans la section droite autour d'ATLAS :

- β* à ± 1%
- β au niveau des détecteurs à ± 2%
- \bullet L'avance de phase entre le FP et le détecteur à \pm 0.5 degree
- \bullet La divergence au IP à \pm 10%
- L'angle de croisement doit être fixé à 0 \pm 0.2 μrad

Ceci est extrêmement « challenging » (MD time). Du hardware est probablement nécessaire pour la mesure de l'angle de croisement

Pots Romains

Data taking position

Physique ATLAS France - Seignosse - 11/09/07

16

Contraintes sur le détecteur

- Zone morte proche du faisceau < 100 μm. Efficacité uniforme plus loin
 - Sensibilité au bruit électromagnétique généré par le faisceau
 - Résolution en position de l'ordre de 30 μm
 - Positionnement relatif à 10 μm entre les deux détecteurs d'un même Pôt
 - Faible tenue aux radiations suffisante : 100 Gy/an (de 10⁵ à 10⁶ Gy/an à haute luminosité)

P. Puzo

Impacts sur ALFA d'événements (5 $10^{-5} < -t < 0.2 \text{ GeV}^2$). Les bandes correspondent à ± 20%

Résultats de faisceau test :

- ≈ 5 photoélectrons par fibre à 950 V
- Résolution spatiale 36 μm in H and V
- Efficacité par plan de 92% (seuil à 0.9 photoélectron)
- Zone inactive << 100 μm

Fibres scintillantes en géométrie UV

Détecteur de recouvrement

Résidu d'un fit linéaire entre la position vraie et la position reconstruite

⇒ La distance entre les détecteurs haut et bas d'un même Pôt est contrôlée au niveau de 10 μ m !

Physique ATLAS France - Seignosse - 11/09/07

Un détecteur de recouvrement permet de reconstruire la trace des particules

du halo à la fois dans les détecteurs H et V (3 plans de fibres par détecteur)

Détecteur

Acceptance

Dépend de la distance au faisceau
Les événements acceptés doivent satisfaire la coïncidence gauche-droite
En intégrant sur t, on reçoit 67% des événements (pour y_d = 1.5 mm)
Pour l'analyse, on demande au moins 50% d'acceptance dans chaque bin en t pour maintenir les corrections et les systématiques à un niveau raisonnable

Physique ATLAS France - Seignosse - 11/09/07

=

Acceptance géométrique

t_{min} pour une acceptance > 50%

$$\Rightarrow$$
 t_{min} = 6.5 10⁻⁴ GeV² \Rightarrow y_d = 1.5 mm

Résolution en t

<u>Dépendance</u>

- Divergence du faisceau $\sigma'=1$
- Etalement du vertex
- Résolution du détecteur
- Alignement du détecteur
- Angle de croisement moyen non nul

La résolution est complètement dominée par la divergence du faisceau

 $\frac{\varepsilon_N}{\beta^*}$

P. Puzo

Physique ATLAS France - Seignosse - 11/09/07

21

P. Puzo

Deux ensembles de détecteurs séparés de 4.14 m de chaque coté : on peut mesurer une pente locale et remonter à la position transverse du vertex au FP (en utilisant la résolution en position du détecteur)

Physique ATLAS France - Seignosse - 11/09/07

Performances

Fit global

Spectre en t reconstruit (échelles linéaire et log)

	Input	Linear fit	Error [%]	Log. fit	Error[%]
L [10 ²⁶ cm ⁻² s ⁻¹]	8.10	8.151	1.77	8.057	(1.89) Statistique
σ_{tot} [mb]	101.511	101.14	0.9	101.77	(1.0) uniquement
b [GeV-2]	18	17.93	0.25	17.97	0.12
ρ	0.15	0.143	4.3	0.146	3.8
Fit range		0.00055< - <i>t</i> < 0.055		$-3.2 < \tau < -1$	1.0
Fit quality [χ^2 /Ndof]		2845/2723		33.2/44	
Fit quality [χ²/Ndof]		2845/2723		33.2/44	

P. Puzo

Erreurs systématiques sur la luminosité

Systematic uncertainties [%]	Linear fit	Logarithmic fit
Nominal result for L	8.151	8.057
Statistical error	1.77	1.89
Beam divergence	0.31	0.30
Crossing angle	0.18	0.15
Optical functions	0.59	0.76
Phase advance	1.0	1.4
Detector alignment	1.3	0.9
Geometrical detector acceptance	0.52	0.43
Detector resolution	0.35	0.19
Background subtraction	1.10	1.51
Total experimental systematic uncertainty	2.20	2.57
Total uncertainty	2.82	3.19

On est dans la gamme des 2-3%!

Physique ATLAS France - Seignosse - 11/09/07

Performances

Conclusion

- On construit un détecteur pour mesurer la section efficace totale et la luminosité absolue
- Prise de données en 2009-2010 ?
- On peut toujours calibrer a posteriori de manière absolue la luminosité, dès lors que LUCID fonctionne
- Le succès d'ALFA dépendra beaucoup de la qualité du faisceau
- Il reste encore énormément de choses à faire avant de fournir une mesure

...

ATLAS Forward Detectors for Measurement of Elastic Scattering and Luminosity Determination ATLAS Collaboration

Technical Design Report

Issue: Revision: Reference: Created: Last modified: Prepared by:

0 ATLAS TDR x, CERN/LHCC 07-xx 23 February 2007 23 February 2007 ATLAS Luminosity and Forward Physics Community CERN/LHCC/2007-xxx LHCC I-xxx

27 February 2007

Devrait paraître pour la semaine ATLAS d'Octobre 2007

CERN/LHCC/2007-xxx LHCC I-xxx 27 February 2007

Backup

P. Puzo

The optical theorem relates the total cross section to the forward elastic rate

$$\sigma_{tot} = 4 \pi \operatorname{Im} \left[f_{el}(t=0) \right] \implies L = \frac{1+\rho^2}{16 \pi} \frac{N_{tot}}{dN_{el}/dt}\Big|_{t=0}$$

This was used by UA4 in the SppbarS in the 80's

ρ: ratio of real to
 imaginary part of the
 elastic scattering amplitude

Optical theorem

Requirements

- Total rate measurement
- Elastic cross section extrapolation to t = 0
- Assume ρ known with enough accuracy

COMPETE Coll.

P. Puzo

Ambiguity in the TEVATRON data

Physique ATLAS France - Seignosse - 11/09/07

28

Total rate measurement requires detector to cover full phase space (98%

Extrapolation of dN_{el}/dt to t = 0 requires small t values (down to $\approx 0.01 \text{ GeV}^2$)

- Nominal divergence = 32 μ rad \Rightarrow beam with smaller divergence
- Divergence scales as 1 / $\sqrt{\beta^*} \Rightarrow$ large β^* required

Exponential region

The absolute luminosity can be in the 2-3% range (TOTEM claims 1%)

P. Puzo