Introduction to supersymmetry, the MSSM, and (a little bit) beyond

Jean-Loïc Kneur

LPTA, Montpellier

Atelier ATLAS-france, Seignosse, 11 septembre 2007

Plan

1. Short review of motivations for supersymmetry (and unexpected bonus)

2. Ingredients and construction of supersymmetric Lagrangians

3. Essential of Minimal Supersymmetric Standard Model (MSSM)

4. Breaking supersymmetry: spontaneous, explicit, etc

5. Different popular SUSY-breaking models (minimal SUGRA, GMSB, AMSB, ...)

6. Some existing constraints on MSSM

1. Supersymmetry: Motivations

Supersymmetry: Poincaré + Fermions ↔ Bosons symmetry:

 $Q|F\rangle = |B\rangle, \quad Q|B\rangle = |F\rangle$

numerous *independent* motivations +unexpected bonus

•Super-Poincaré: the largest possible symmetry (in 4-dim): basic algebra (schematically):

 $\{Q, Q^{\dagger}\} \propto P_{\mu}; \quad [Q, P_{\mu}] = 0$

"square-root" of translation: escape of 60's no-go theorems (Coleman-Mandula) for enlarged space-time+internal symmetries [$space - time \ sym$] $\otimes internal \ sym$]

-if made a local symmetry, necessary ingredient of a quantum gravity \rightarrow Supergravity etc

The "hierarchy" or naturalness problem

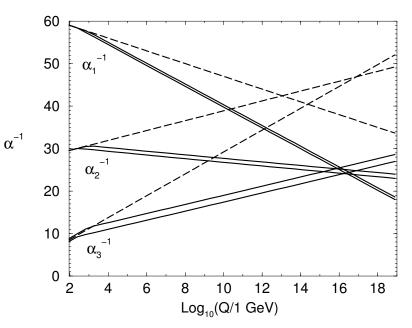
radiative corrections to Higgs mass: $\delta m^2_{Higgs} \propto M^2_{GUT,Planck}$?? Stabilized! bosons S_L, S_R fermions $\begin{pmatrix} & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ $H = -\frac{h_{f}}{f} \begin{pmatrix} f_{L} \\ c \end{pmatrix}^{h_{f}} = - -\frac{h_{f}}{f}$ + equality of couplings relative sign $\delta m_H^2 = \frac{N_c h_f^2}{16\pi^2} \left[-2M_{Pl}^2 + 3m_f^2 \ln \frac{M_{Pl}^2}{m_f^2} + 2M_{Pl}^2 - 2m_s^2 \ln \frac{M_{Pl}^2}{m_s^2} \right]$ Moreover even the \ln terms cancel if m_f , m_s arise from sym. breaking $(m_f \sim h_f v = m_s)$ (another graph then) exact SUSY \rightarrow equality of masses AND couplings. Broken SUSY: $m_f \neq m_s \rightarrow \ln$ terms survive: "fine-tuning" pb \rightarrow acceptable IF $m_{sparticles} \lesssim \mathcal{O}$ (1 TeV)

NB origin of the large rad. corr. $\propto mt^4\ln[..]$ to MSSM H mass

+Unexpected bonus (not original motivations but welcome)

•Grand Unification consistent with Proton lifetime limits

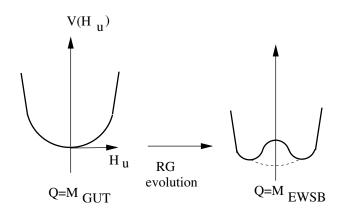
-Due to SUSY particle threshold
+ SUSY Renor Group Evol.
(totally excluded in SM)



-Unification scale $M_{GUT} > 10^{16}$: large enough to escape Proton decay limits (Superkamiokande) ~ 1.9 10^{33} years -However, 1 - 2% mismatch $1 - \alpha_S(M_{GUT})/\alpha_1(M_{GUT})$: hoped to be explained by GUT scale threshold corrections... (but dim 5 operators can disturb this "conventional wisdom"!)

Another unexpected bonus..

• Radiative electro-weak sym. breaking: "mexican hat" scalar potential induced by Renormalization Group (RG) evolution: $GUT \rightarrow low energy$



 $m_{H_u}^2(E) < 0$ by RG evolution $E_{GUT} \rightarrow E_{EWSB}$ ($\propto m_t^2$) made possible thanks to the large value of m_{top} ! (does not explain why m_{top} is large, though)

Yet another unexpected bonus...

•Very plausible candidate to Dark Matter (neutralino LSP) present strong indication that \sim 10% of mass in universe is neutral, weakly interacting cold DM

But, problem: SUSY has to be broken: what's the right model? :<...

To date: NO consistent model of spontaneous (or dynamical) SUSY-breaking! (breaking has to be in a "hidden" sector)

 \rightarrow proliferation of SUSY-breaking (arbitrary) parameters: All possible gauge-invariant interactions between quite many (s)particles.. IF no more theoretical prejudices applied

2. Basics of supersymmetric gauge theories

•Supersymmetric extensions of SM follow the rules of (super)gauge theories:

based on two set of fields with specific gauge+susy transformations:

-Chiral fields: left-handed fermions + scalar partners -Vector fields: vector gauge bosons + fermion (majorana) partners

-Right handed fermions: from charge conjugate representation of chiral fields: $(\psi_R)^c = (\psi^c)_L$

-Higgs field: described by chiral fields: \Leftrightarrow fermion partners

A bit of supersymmetric formalism

Basic ingredients: 2-components spinors χ_{α} , $\bar{\psi}^{\dot{\alpha}}$ $\alpha, \dot{\alpha} = 1, 2$ makes supersymmetric properties more manifest may be contracted to form Lorentz-invariants: $(\psi\chi) \equiv \psi^{\alpha}\chi_{\alpha} \equiv \psi^{\alpha}\epsilon_{\alpha\beta}\chi^{\beta}, \epsilon_{\alpha\beta}$ antisymmetric: $\epsilon_{12} = -\epsilon_{21} = 1$ Standard Dirac spinor (4-component object):

$$\Psi_D = \begin{pmatrix} \chi_{\alpha} \\ \bar{\psi}^{\dot{\alpha}} \end{pmatrix}, \quad \bar{\Psi}_D \equiv \Psi^{\dagger} \gamma_0 = (\psi^{\alpha}, \ \bar{\chi}_{\dot{\alpha}}), \quad \gamma_{\mu} = \begin{pmatrix} 0 & \sigma_{\mu} \\ \bar{\sigma}_{\mu} & 0 \end{pmatrix}$$

 $\rightarrow \text{ standard (Dirac) contraction e.g. } \bar{\Psi}_D \Psi_D = \psi \chi + h.c. \text{ etc}$ Majorana: $\Psi_M = \begin{pmatrix} \chi_\alpha \\ \bar{\chi}^{\dot{\alpha}} \end{pmatrix}$ i.e. such that $\Psi_M^c = \Psi_M$

Note $(\Psi_D)_L = \frac{1}{2}(1 - \gamma_5)\Psi_D = \chi_{\alpha}, \quad (\Psi_D)_R = \frac{1}{2}(1 + \gamma_5)\Psi_D = \bar{\psi}^{\dot{\alpha}}$

Superspace formalism

Convenient: describe boson+ fermion by same "superfield": in addition to usual space coordinate x_{μ} , introduce new anticommuting spinor variables θ_{α} , $\theta_{\dot{\alpha}}$

 $\theta_{\alpha}\theta_{\beta} = -\theta_{\beta}\theta_{\alpha} \to (\theta_{\alpha})^2 = 0 \quad \text{but } \theta\theta \equiv \theta^{\alpha}\epsilon_{\alpha\beta}\theta^{\beta} \neq 0!$

e.g chiral superfield (irreducible SUSY representation): $\Phi(x, \theta, \bar{\theta} = 0) = \phi(x) + \sqrt{2}\theta\psi(x) + \theta^2 F(x)$ where ϕ scalar, ψ fermion, *F* scalar (auxiliary) fields -Expansion stops at θ^2 due to anticommuting properties of θ

-*F* "scalar" has dim $[m]^2$ and NO kinetic term (\Leftrightarrow function of other fields from its eq. of motion): *F* assures (off-shell) matching of boson vs fermion d^0 freedom

Supersymmetric transformation of fields

Supersymmetry transformation = translation in superspace parameterized in terms of infinitesimal (Grassman) ζ -SUSY generators expressed as derivative operators $Q_{\alpha} = -i\partial_{\theta} + \sigma^{\mu}\bar{\theta}\partial_{\mu}$ (analog of $P_{\mu} \rightarrow i\partial_{\mu}$) where extra terms originates from $\{Q, Q^{\dagger}\} \propto P_{\mu}$

Components of chiral field transform as

$$\delta\phi = \sqrt{2}\zeta\psi, \qquad \delta F = -i\sqrt{2}\zeta\sigma^{\mu}\partial_{\mu}\psi$$

$$\delta \psi = -i\sqrt{2}\sigma^{\mu}\bar{\zeta}\partial_{\mu}\phi + \sqrt{2}\zeta F$$

Note *F* transforms as total derivative:

a basic ingredient for SUSY-invariant Lagrangians

Vector Superfield (are hermitian)

Similarly the vector superfield reads in the simplest gauge choice (so called Wess-Zumino):

 $V(x, \theta, \overline{\theta}) = -(\theta \sigma^{\mu} \overline{\theta}) V_{\mu} + i \theta^2 \overline{\theta} \overline{\lambda} - i \overline{\theta}^2 \theta \lambda + \frac{1}{2} \theta^2 \overline{\theta}^2 D$ where V_{μ} usual vector field, λ its Majorana fermion partner, D auxiliary (scalar), with appropriate SUSY-transformations.

Again, auxiliary field D transforms as total derivative

There is also a chiral superfield, derived from V, generalizing "gauge field strength":

 $W_{\alpha}(x,\theta,\bar{\theta}) = -i\lambda_{\alpha} + (\theta\sigma_{\mu\nu})^{\alpha}F^{\mu\nu} + \theta^{\alpha}D - \theta^{2}(\bar{\sigma}^{\mu}\mathcal{D}_{\mu}\bar{\lambda})^{\alpha}$ tranforms like usual $V_{\mu\nu}$ under gauge symmetry

 \rightarrow building blocks to construct SUSY-invariant Lagrangian.

Supersymmetric Lagrangian

Armed with this formalism, "straightforward" to construct SUSY- and gauge-invariant Lagrangians $\mathcal{L}_{SUSY} = \frac{1}{4g^2} (Tr[W^{\alpha}W_{\alpha}]_F + h.c) + \sum_i [\bar{\Phi}e^{(gV)}\Phi]_D + [W(\Phi)]_F$ where $[\cdots]_{F,D}$ means appropriate "projection" $(\theta^2, \theta^2\bar{\theta}^2 \text{ coefficients resp.})$ that transform as total derivative.

$$\begin{split} W(\Phi) & \text{superpotential} = \dim -3 \text{ gauge-invariant} \\ & \text{polynomial function of chiral field } \Phi: \\ W(\Phi) &= c_i \Phi_i + \frac{m_{ij}}{2} \Phi_i \Phi_j + + \frac{\lambda_{ijk}}{3!} \Phi_i \Phi_j \Phi_k \\ & \text{Scalar potential:} \\ V(F_i, F_i^*, D^a) &= \sum_i F_i^* F_i + \frac{1}{2} \sum_a (D^a)^2 \\ F_i^* &= \frac{\partial W(\Phi)}{\partial \Phi_i}, \qquad D^a &= -g \sum_i (\phi_i^* T^a \phi_i) \end{split}$$

3. Minimal Supersymmetric Standard Model (MSSM) in short

(s)particles		spin 0	spin 1/2	$SU(3)_c, SU(2)_L, U(1)_Y$	
squarks, quarks	Q	$(ilde{u}_L, ilde{d}_L)$	(u_L,d_L)	(3, 2, 1/6)	
(x 3 families)	$ar{u}$	$ ilde{u}_R^*$	u_R^\dagger	$(\bar{3}, 1, -2/3)$	
	$ar{d}$	$ ilde{d}_R^*$	d_R^\dagger	$(\bar{3}, 1, 1/3)$	
sleptons, leptons	L	$(ilde{ u}, ilde{e}_L)$	(u, e_L)	(1, 2, -1/2)	
(x 3 families)	\bar{e}	$ ilde{e}_R^*$	e_R^\dagger	(1, 1, 1)	
Higgs, Higgsinos	H_u	(H_u^+, H_u^0)	$(\tilde{H}_u^+, \tilde{H}_u^0)$	(1, 2, 1/2)	
	H_d	(H^0_d, H^d)	$(\tilde{H}^0_d,\tilde{H}^d)$	(1, 2, -1/2)	

Table 1: Chiral Supermultiplet of MSSM

Table 2: Vector Supermultiplet of MSSM

(s)particles	spin 1/2	spin 1	$SU(3)_c, SU(2)_L, U(1)_Y$
gluino, gluon	\tilde{g}	g	(8, 1, 0)
Winos, W boson	$ ilde W^{\pm}, ilde W^0$	$W^{\pm}W^0$	(1,3,0)
Binos, B boson	\tilde{B}	В	(1, 1, 0)

MSSM Superpotential (R-parity conserving!)

$$\begin{split} \overline{W} &= \sum_{i,j=gen} -Y_{ij}^u \,\hat{u}_{Ri} \hat{H}_u . \hat{Q}_j + Y_{ij}^d \,\hat{d}_{Ri} \hat{H}_d . \hat{Q}_j + Y_{ij}^l \,\hat{l}_{Ri} \hat{H}_d . \hat{L}_j + \mu \hat{H}_u . \hat{H}_d \ , \\ \mathcal{L}_{SUSY} = \text{kin. terms (susy +gauge) } + F^2 , D^2 \text{ terms } \propto \partial_{\phi_i} W \text{, etc} \end{split}$$

Note at this (exact supersymmetric SM) stage: $-m_{fermions} = m_{bosons}$? Yes, before EWSB, but all masses zero! some amount of F/B mass diff. due to EWSB! (see later) -quartic couplings determined by gauge couplings -equality of fermion and boson couplings: essential for cancellation of all quadratic UV div. \Rightarrow only logarithmic div (wave form and gauge cpling) renormalization, superpotential $W(\Phi)$ NOT renormalized) -Only new parameter: μ

Clearly unrealistic! must introduce supersymmetry breaking...

Digression: R-parity and its violation business

In MSSM, Higgs superfields H_u , H_d have same quantum numbers as leptons: \rightarrow SUSY+gauge-inv allow mixing: $\mu^i L_i H_u$, $\lambda^{ijk} L_i L_j \bar{e}_k$ etc \rightarrow *L*-violation + ν -mass contributions !! similarly trilinear quark terms allowed: $\bar{u}d\bar{d} \rightarrow B$ -violation Some couplings very constrained by rare decays, P decay, etc, but not all

- \rightarrow introduce discrete symmetry: R-parity (Fayet 1976) $R = (-1)^{2s+3B+L}$
- $\rightarrow R_P(\text{matter fermions}) = +1, R_P(\text{all spartners}) = -1$ ensure that superpartners produced by pairs lightest R_P -odd partner (LSP) stable (DM candidate) Rk: R_P is discrete version of U(1) R-sym in extended models

General (arbitrary) parameters of "soft" SUSY-breaking:

soft SUSY-breaking = that do not reintroduce quadratic UV divergences

•Mass Terms for Gluinos, Winos and Binos:

$$-\mathcal{L}_{\text{gaugino}} = \frac{1}{2} \left[M_1 \tilde{B} \tilde{B} + M_2 \sum_{a=1}^3 \tilde{W}^a \tilde{W}_a + M_3 \sum_{a=1}^8 \tilde{G}^a \tilde{G}_a + \text{h.c.} \right]$$

minimal SUGRA universality: $M_1(E_{GUT}) = M_2(E_{GUT}) = M_3(E_{GUT}) \equiv m_{1/2}$

•Mass terms for sfermions:

$$-\mathcal{L}_{\text{sfermions}} = \sum_{i=gen} m_{\tilde{Q}i}^2 \tilde{Q}_i^{\dagger} \tilde{Q}_i + m_{\tilde{L}i}^2 \tilde{L}_i^{\dagger} \tilde{L}_i + m_{\tilde{u}i}^2 |\tilde{u}_{R_i}|^2 + m_{\tilde{d}i}^2 |\tilde{d}_{R_i}|^2 + m_{\tilde{l}i}^2 |\tilde{l}_{R_i}|^2$$

mSUGRA universality: $m_{\tilde{Q}i}(E_{GUT}) = \cdots = m_{\tilde{l}i}(E_{GUT}) \equiv m_0$

Mass and bilinear terms for Higgs scalars:

 $-\mathcal{L}_{\text{Higgs}} = m_{H_u}^2 H_u^{\dagger} H_u + m_{H_d}^2 H_d^{\dagger} H_d + B\mu (H_u.H_d + \text{h.c.})$ mSUGRA universality: $m_{H_u}^2 (E_{GUT}) = m_{H_d}^2 (E_{GUT}) \equiv m_0^2$

•Finally, some trilinear interactions between scalars (sfermions and Higgs bosons):

$$-\mathcal{L}_{\text{tril.}} = \sum_{i,j=gen} \left[-A^u_{ij} Y^u_{ij} \tilde{u}_{R_i} H_u . \tilde{Q}_j + A^d_{ij} Y^d_{ij} \tilde{d}_{R_i} H_d . \tilde{Q}_j + A^l_{ij} Y^l_{ij} \tilde{l}_{R_i} H_d . \tilde{L}_j + \text{h.c.} \right]$$

mSUGRA universality: $A_{ij}^u(E_{GUT}) = A_{ij}^d(E_{GUT}) = A_{ij}^l(E_{GUT}) \equiv A_0\delta_{ij}$

Sparticle spectrum:5 Higgs scalars: h, H, H^{\pm}, A •2 Charginos: $\tilde{\chi}_{1,2}^{\pm}$;4 neutralinos $\tilde{\chi}_{1-4}^{0}$,1 gluino \tilde{g} •Numerous sfermions:sleptons ($\tilde{e}, \tilde{\mu}, \tilde{\nu}_{e}, \dots \tilde{\tau}_{1,2}$),squarks: $(\tilde{u}, \tilde{d}, \dots \tilde{b}_{1,2}, \tilde{t}_{1,2})$

An Extension of MSSM: N(ext)MSSM

• μ -parameter problem in MSSM:

$$\mu \stackrel{?}{\sim} M_{\rm susy} \sim M_{\rm weak}$$

- $\mu = 0$? (could be if "R-symmetry") But experimentally excluded
- $\mu = M_{\rm Pl} \longrightarrow$ "hierarchy" problem
- •Solution: add a singlet S coupled to H_u, H_d

 $W_{\rm NMSSM} = \int H_d H_d + \lambda S H_u H_d + \frac{1}{3} \kappa S^3$ (+ Yukawas) After potential minimization: $\mu_{\rm eff} \equiv \lambda \langle S \rangle \sim M_{\rm susy}$

• $\lambda, \kappa \rightarrow 0, \mu_{eff} \neq 0$: MSSM + decoupled singlet sector

The NMSSM in short

- particle content:
 - \widetilde{S} : one more neutralino $\longrightarrow \widetilde{\chi}_{i=1..5}^{0}$
 - S_R : one more neutral (CP even) scalar $\longrightarrow h_{i=1,2,3}$
 - S_I : one more (CP odd) scalar $\longrightarrow A_{i=1,2}$
 - \Rightarrow New physics beyond MSSM
- Parameters: $V_{\text{Higgs}} = V_F + V_D + V_{\text{soft}}$ $V_{\text{soft}} = \left(\lambda A_{\lambda} H_u H_d S + \frac{1}{3} \kappa A_{\kappa} S^3 + \text{hc}\right) + m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2$ + 3 minimization conditions:

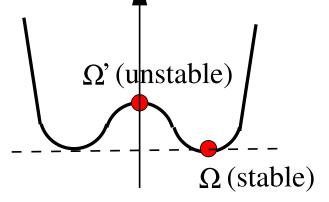
$$\mu_{\text{eff}} = \lambda \langle S \rangle, \quad \tan\beta = \frac{\langle H_u \rangle}{\langle H_d \rangle}, \quad M_Z^2 = \bar{g}^2 \left(\langle H_u \rangle^2 + \langle H_d \rangle^2 \right)$$

 \implies 6 free parameters: λ , κ , A_{λ} , A_{κ} , μ_{eff} , $\tan\beta$ compared to MSSM: 2 free parameters (m_A , $\tan\beta$)

4. How to break supersymmetry?

Why is it so difficult to break SUSY *spontaneously*? SUSY algebra involves the Hamiltonian: $H = P_0 = \sum Q_{\alpha}^2 \ge 0$

 $\rightarrow \text{expect (in global SUSY)}$ $\langle H \rangle_{\Omega \ supersymmetric} = 0;$ $\langle H \rangle_{\Omega' \ non-supersymmetric} > 0$ $V \sim \frac{1}{2} \sum (F^2 + D^2) > 0$



from SUSY-transformation (schematically): $\delta\psi \sim (\sigma^{\mu}\partial_{\mu}\phi + F)\zeta, \qquad \delta\lambda \sim (\sigma^{\mu}\sigma^{\nu}V_{\mu\nu} + D)\zeta$

 $\langle F \rangle$ and/or $\langle D \rangle \neq 0 \leftrightarrow \langle \delta \psi \rangle$ and/or $\langle \delta \lambda \rangle \neq 0$ spont. breaking with sfermion ψ or gaugino λ Goldstone fermion resp. (Analogy with usual SSB: $\delta \phi_2 = \theta \phi_1$, so $\langle \phi_1 \rangle \neq 0 \rightarrow \langle \delta \phi_2 \rangle \neq 0$) Only way to get spontaneous SUSY-breaking:

look for models where $F_i = 0$ and/or $D^a = 0$ cannot be *simultaneously* satisfied for *any* field values.

Toy models do exist, but turn to be both

-contrived and exceptional situations

-phenomenologically unrealistic

(can't match SM gauge etc structure and/or strongly already excluded e.g due to sparticle mass limits)

Toy models of spontaneous SUSY-breaking

-O'Raifeartaigh: (F-term breaking) superpotential W such that $V = |m\phi_1|^2 + |\lambda(\phi_1^2 - a^2)|^2 + |m\phi_2 + 2\lambda\phi_3\phi_1|^2$ (ϕ_i are chiral superfields)

immediate that the first two terms can't be *both* zero \rightarrow SSSB.

More precisely if $|m|^2 > 2|\lambda^2 a^2|$ global min at $\phi_1 = \phi_2 = 0$; $\rightarrow \langle F_3 \rangle \neq 0$: *flat* direction along ϕ_3 (so-called "moduli" field)

SUSY-breaking manifests as fermion ψ_1 mass mwhile ϕ_1^+, ϕ_1^- mass $m^2 \pm 2\lambda^2 a^2$. However note the sum rule (a generic feature): $m_{\phi_1^-}^2 + m_{\phi_1^+}^2 = 2m_{\psi_1}^2$ just like exact SUSY...

Clearly excluded in MSSM!

D-term spontaneous SUSY-breaking

Fayet-Iliopoulos model: for U(1) gauge symmetry $V = |mQ|^2 + |m\bar{Q}|^2 + \frac{1}{8}|Q^{\dagger}Q - \bar{Q}^{\dagger}\bar{Q} + 2\kappa_{FI}|^2, Q, \bar{Q}$ chiral Sfields. Linear term in κ_{FI} allows SSSB (for $m^2 > \kappa_{FI}/2$): only OK for U(1) (non-abelian sym: no invariant linear term!). -maybe possible for extra U(1) beyond SM: Z' models (Still, not sufficient for realistic MSSM spectrum) -Note D-term and F-term present in MSSM: some $m_F \neq m_B$ amount triggered by EWSB... (e.g. in sfermions mass terms) but not consistent alone (tachyonic and/or obviously excluded) sfermion masses typically \rightarrow MSSM really needs soft terms!

 \rightarrow SUSY-breaking in hidden sector, communicated to SM

5. Generic features of hidden sector SUSY-breaking

Analogy with EWSB in SM: parameterized by $\langle v \rangle$

EWSB sector	Mediating interactions	Observable sector
	(= Yukawa couplings)	
$h ightarrow \langle v angle$	h,q,l	q,l

"Hidden" SUSY-breaking	Mediating interactions	Observable sector
sector		
$Z \to \langle F \rangle$	Z,Q,L	Q, L

SUSY-breaking parameterized by $\langle F \rangle$ of dim $[m]^2$

3 popular patterns: gravity-, gauge-, and anomaly-mediated Actually all appear in a complete Supergravity picture! Distinction arise from assumption on dominant mechanisms

Gravity-mediated susy breaking (minimal SUperGRAvity)

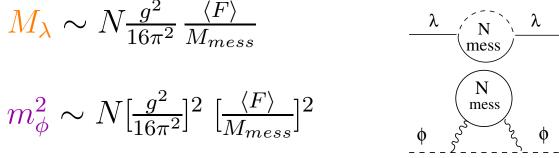
Start from Supergravity with "Kähler potential" $K(\phi, \phi^*)$ (Non-renormalizable terms) \rightarrow suppressed by $1/M_{Planck}$ \rightarrow soft terms of order $\sim \langle F \rangle / M_{Planck}$ when $Z \rightarrow \langle F \rangle$:

 $\begin{array}{ccc} c_{ij} & \frac{Z^{\dagger}Z}{M_{Planck}^{2}} & \phi_{i}^{*}\phi_{j} \rightarrow m_{0}^{2} \text{ scalar masses} \\ c_{a} & \frac{Z}{M_{Planck}} & \lambda_{a}\lambda_{a} \rightarrow m_{1/2} \text{ gaugino masses} \\ c_{ijk} & \frac{Z}{M_{Planck}} & \phi_{i}\phi_{j}\phi_{k} \rightarrow A_{0} \text{ trilinear terms} \end{array}$

 $F \sim M_{weak}M_{Planck} \sim [10^{10}GeV]^2$: high scale SUSY-breaking (but $\langle F \rangle$ may also be triggered by gaugino condensation) -Caution: famous universality in mSUGRA comes from minimal assumptions on Kähler and Super potential (i.e *separable* hidden/visible $K(\phi, \phi^*), W(\phi)$ contributions) Non-universal terms are there in more general scenario...

Gauge-mediated SUSY-breaking (GMSB)

Add N "messenger" Q, L heavy fields with mass M_{mess} and SUSY-breaking vev $\langle F \rangle$ that couple to SM gauge fields



Trilinear terms $A_i(M_{mess}) \sim 0$ (2-loop; but much suppressed) choose $M_{mess} \ll M_{Planck}$:

 $\frac{F}{M_{mess}} \gg \frac{F}{M_{Planck}} \rightarrow \text{gravity-mediated contributions negligible}$

Scalar masses determined by gauge quantum nbs: solve SUSY flavor pb

Low scale SUSY breaking $F \sim M_{mess}^2$, $\sqrt{F} \sim 10^4$ GeV but 10^4 GeV $\lesssim M_{mess} \lesssim 10^{14}$ GeV possible NB LSP can be (very light) gravitino: $M_{3/2} \sim \langle F \rangle / M_{Planck}$

Anomaly-mediated SUSY-breaking (AMSB)

The anomaly (symmetry breaking at quantum level) of the (super)conformal symmetry induces soft SUSY breaking! NB was always present; but assumed sub-dominant (loop-suppressed) in standard "mSUGRA"

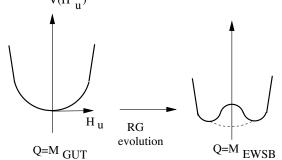
gauginos:
$$M_i \sim b_i \frac{g_i^2}{16\pi^2} M_{3/2}$$
 b_i (RGE) = $(33/5, 1, -3)$

squarks, sleptons: $(m^2)_j^i \sim (\dot{\gamma})_j^i [\frac{M_{3/2}}{16\pi^2}]^2$; also $A_i \sim \frac{M_{3/2}}{16\pi^2}$ γ_j^i standard RGE anomalous mass dimensions e.g. $\gamma_Q = -Y_u^{\dagger}Y_u - Y_d^{\dagger}Y_d + \sum_i c_i g_i^2$ Almost flavor blind! But generally tachyonic \tilde{l}_L , $\tilde{l}_R \rightarrow$ add a m_0 term by hand... however some recent criticisms (e.g. Dine+Seiberg '07)

perhaps more consistent " m_0 " terms will soon emerge??..

6. Some constraints on MSSM

Unescapable constraint: consistent electro-weak symmetry breaking (EWSB) $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ In MSSM: produced by RG evolution of $m_{H_u}^2(E)$, $m_{H_d}^2(E)$: ~ OK if $m_{H_u}^2(E) < 0$ by RG evolution $E_{GUT} \rightarrow E_{EWSB}$ ($\propto m_t^2$)



AND $|\mu|$ determined by minimization of the scalar potential: $2\mu^2 = \tan(2\beta)(\hat{m}_{H_u}^2 \tan\beta - \hat{m}_{H_d}^2 \cot\beta - M_Z^2)$

 $\begin{aligned} &2B\,\mu = \sin 2\beta\,(\hat{m}_{H_u}^2 + \hat{m}_{H_d}^2 + 2\mu^2) \\ &\tan\beta \equiv \frac{v_u}{v_d}, \qquad \hat{m}_{H_i}^2 = m_{H_i}^2 + \partial_{v_i} V_{loop}^{eff}\big(m_{sparticles},\mu\big) \end{aligned}$

 \rightarrow not always consistent solution for $\mu \rightarrow$ excluded domains

 μ very sensitive to rad. corr., m_t ,.. via Renorm. Group Evolution (RGE):

$$\frac{d(m_{H_u}^2)}{d\ln E} \propto m_t^2(m_{H_u}^2 + ...)$$

and $\mu^2 \sim -m_{H_u}^2 - m_Z^2/2$ (for $\tan \beta \gg 1$),

• μ enters everywhere in MSSM spectrum: Higgses, $\tilde{\chi}^{\pm}, \tilde{\chi}^{0}$ (via Higgsinos $\tilde{H}_{u}, \tilde{H}_{d}$), \tilde{q}, \tilde{l} (via mixing)

Also: "CCB" minima (Charge and/or Color breaking) deeper than electroweak min. can appear

(CCB domains to exclude e.g if trilin. cpling A_i too large)

Ingredients of spectrum calculation in MSSM

-for example SuSpect 2.35 (A. Djouadi, JLK, G. Moultaka) •Low energy input $\alpha(M_Z), \alpha_S(M_Z), M_t^{pôle}, M_\tau^{pôle}, m_b^{\overline{MS}}(m_b)$; $\tan \beta(M_Z)$ via radiative corrections $\Rightarrow g_{1,2,3}^{\overline{DR}}(M_Z), Y_\tau^{\overline{DR}}(M_Z), Y_b^{\overline{DR}}(M_Z), Y_t^{\overline{DR}}(M_Z)$

•Choice of SUSY-breaking model (mSUGRA, GMSB, AMSB,..) Fixes initial condition at high energy (mSUGRA: $m_0, m_{1/2}, A_0$, sign(μ), etc...).

•Evolution of parameters by RGE down to $M_{\rm EWSB} \sim \mathcal{O}(100 GeV - -1TeV)$ •Control of EWSB consistency (convergence of μ , no CCB minima, etc...)

•Diagonalisation of mass mixing matrices and pole mass calculation (Including Rad. Corrections for Higgses, sfermions, gauginos)

Experimental Constraints on MSSM

- previous LEP limits on sparticle masses:
- $m_{\chi_1^+} \gtrsim 104 \; \mathrm{GeV}$ $m_{\tilde{\tau}^\pm} \gtrsim 100 \; \mathrm{GeV}$
- $m_{\tilde{t}_1,\tilde{b}_1}\gtrsim 100~{\rm GeV}$

(Latest TeVatron limits: see Laurent Duflot presentation!!) Direct (LEP) limits on Higgs mass:

 $M_h \gtrsim 114 \; \mathrm{GeV}$

(but th. uncertainty on M_h : ~ 3 GeV)

-not valid if A light: $\rightarrow M_{h,A} \gtrsim 90$ GeV (limits from $e^+e^- \rightarrow hA$)

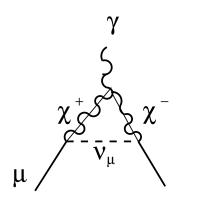
Indirect constraints: from virtual SUSY contributions:

W,Z $(\tilde{t},\tilde{b},...)$ \sim constraining IF e.g large \tilde{t}, \tilde{b} mass splittings

• $g_{\mu} - 2$ constraints: SUSY loop contributions

Charginos+ sneutrino (leading);

(Also Neutralinos + smuon)



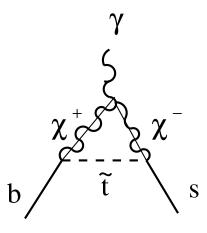
Standard Model (SM) contributions: hadron vacuum polarization (from dispersion relation: $\sigma(e^+e^-)$, τ decays)

Recent re-emergence of a 2-3 σ -discrepancy if taking only $\sigma(e^+e^-)$ data (see Fabio Zwirner's talk) approx.: $10.6 \cdot 10^{-10} < \Delta a_{\mu}^{SUSY} < 43.6 \cdot 10^{-10}$

ightarrow Rather constraining: ($\mu < 0$ not favored)

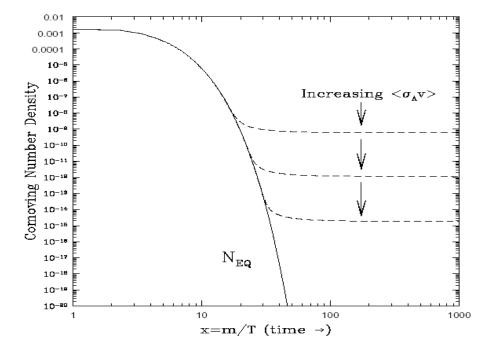
• $b \rightarrow s\gamma$ constraints:

SM contributions: W^{\pm} and t essentially SUSY contributions: Charginos + stops; H^{+} + top



- + potentially large NLO contributions IF enhanced by large $\tan \beta$ and/or $\ln(m_{sparticles}/M_W)$
- e.g. approx.: $2.65 \le 10^4 \cdot B.R.(b \to s\gamma) \le 4.45$ + constraint on amplitude sign! (\simeq constraints on BR($b \to s l^+ l^-$) (i.e. requires SM sign)

Dark Matter relic density constraints:



•In early universe, "WIMP" (χ^0) are in thermal equilibrium •As universe expanded and cool down, their density reduced through pair annihilation •Eventually, density too low for annihilation to keep up with expansion rate: $\rightarrow T_{Freeze-out}$ (i.e. χ^0 decouple from SM) $\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle [n^2 - n_{eq}^2]$

Experimental (WMAP) evidence for Ωh^2

WMAP: $0.087 < \Omega h^2 < 0.138$: conservative (99% C.L.)

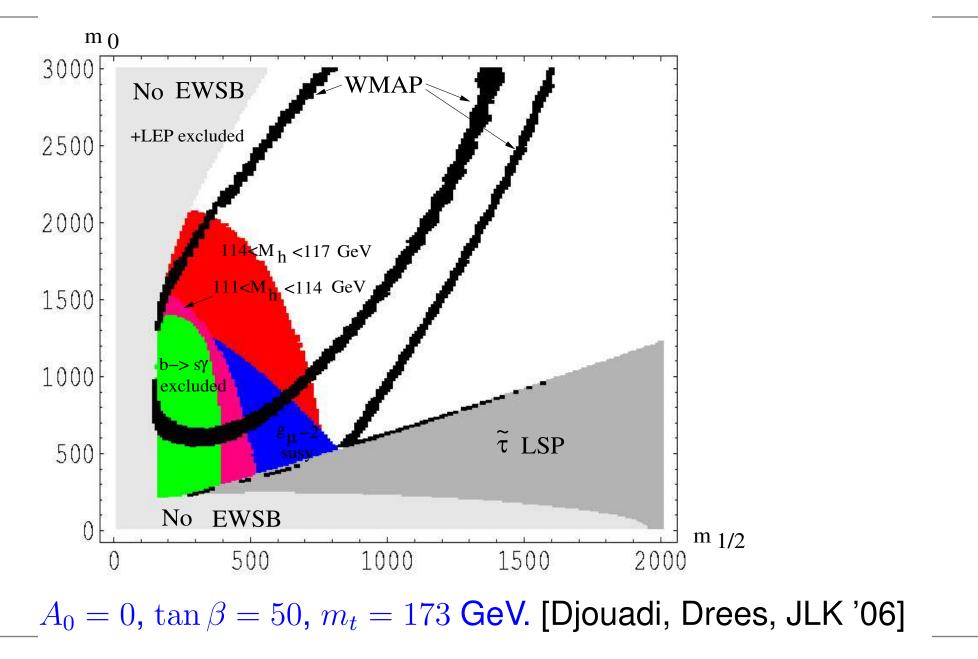
IF LSP = χ_0 : $\Omega_{\chi} h^2 \equiv$ relic density ~ $3.10^{-27} cm^3 s^{-1} \times [\langle \sigma(\chi_0 \chi_0 \to all) + co - annihilation \ processes \rangle]^{-1}$

 $\rightarrow \sigma \text{ large } \rightarrow \Omega h^2 \ll .1 \text{ too small}; \\ \sigma \text{ small } \rightarrow \Omega h^2 \text{ too large}$

NB over 3000 processes $\sigma(\chi_0\chi_0 \to ...)$ can contribute! But most relevant contributions depend on nature of LSP χ_1^0 : $\chi_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}_3 + N_{13}\tilde{H}_d + N_{14}\tilde{H}_u$

e.g for $M_1 \ll \mu$, χ_1^0 is mainly "Bino", etc

Example of constraints in mSUGRA



Summary

-Problem of SUSY-breaking: no final convincing model -would be better guide if a truly consistent picture of *dynamical* SUSY-breaking

-about 35 years of "waiting for SUSY": shall we start skepticism? (and she missed already some rendez-vous: LEP1,2,TeVatron,..)

-embarassing fine tuning pbs, what if the spartners are very heavy, etc... -embarassing flavor mixing, R-parity, etc

-On aimerait bien surfer avec SUSY sur la vague LHC! LHC should guide our prejudices on SUSY-breaking models