Single top in the CSC framework

Arnaud Lucotte (LPSC, IN2P3/CNRS, UJF, INPG)

Outline

Introduction

- a) Motivations & Context
- b) Lessons from the TeVatron

Preselection of single-top

- a) Triggers
- b) Tagging Rate Function
- c) Preselected sample

CSC and cross-section measurements

- a) t-channel
- b) Wt-channel
- c) S-channel
- d) Systematics

Conclusion & perspectives

Contributors to single-top CSC analyses

	A	ATLAS NOTE	(CERN)
1. Introduction	hà	ATL-PHYS-PUB-2007-XXX August 29, 2007	N
S. Rolli , AL	Prospect fo	r single ton cross-section measuremen	ts in ATLAS
2. Phenomenology	Trospectio	r single top cross-section measuremen	IS III AT LAS
R. Schwienhorst, AL			
3. Reconstruction & trigger	perform	ance ATLAS Collaboration	
A. Shibata, M. Kajkhad, C.	Cojocaru	ı, P. Ryan	
4. Preselection of single top	events	Abstract	
S. Rolli, all	At the LHC, the production. With a low luminosity run	he production of single top quarks accounts for a the more than two millions of single top events produced a precise determination of all contributions to the to	hird of the top pairs every year during a stal single-top cross-
5. Single-top evidence with	section seems achi	evable. These measurements will constitute the first then the second state of the seco	direct measurement obe for new physics, he measurements of
R. Schwienhorst, Jenny, P.	additional bosonic Rystright op n distinct	contributions to the single top production. production mechanisms proceeds through three diff t final states, topologies, and backgrounds. This re	erent sub-processes port establishes the
6. t-channel cross-section m	preselection, inclu preselection, inclu	or the cross-sections measurements of all three contri ding triggers, is described and it addresses lepton i and the tagging performance. Specific sel expected in terms of tati	butions. A common dentification issues, ections are detailed stical sensitivity and
A. Shibata, N. Triplett	systematic uncertainties. A special emphasis is put on the strategies for an early evidence of single top production, including triggers issues as well as methods which will be used to estimate Standard Model backgrounds from data when possible.		
7. s-channel cross-section r	neasure	ment	
A.L			
8. Wt-channel cross-section	measu	rement	
B. Clement			
9. Common systematics			
M. Cristinziani, G. Khoriau	li, A. Shit	oata,	
D. Shouten, J. Cochran	-	-	

Motivations & Context

Production at the LHC

All 3 contributing mechanisms in SM

Phenomenology

Cross-section uncertainties

 $\Delta\sigma/\sigma_{theo}$ ~ 4 to 6% (renorm. scale, pdf, input m_{top}) Main backgrounds @ LHC

Top pair events (was W+jets @ TeVatron)

(1) Z. Sullivan, Phys. Rev D70 (2004) 114012 (2)Campbell et al., hep-ph/0506289 PAF 2007 / SingleTop

Motivation : why single-top ?

Precise tests of SM

Precise measurement of cross-section :

Direct determination of V_{tb}

Measurement of Top width

Polarized top :

Top polarization measurement

Single Top production at the TeVatron...

Evidence for single-top

First evidence (3σ) in DØ :

 \rightarrow (s+t) combined

High level of background :

Low S/B, B mainly from W+(b) jets + Top pairs

Development of statistical methods :

Boosted Decision+ Trees Neural Net +Likelihoods ...

Lessons from the TeVatron Performance need in :

b-tagging efficiency & mistag rates Jet energy scale (to a lesser extend)

Main background (W+jets) poorly understood :

Considerable tuning of MC to data required

Use of refined techniques :

Several MultiVariate analyses confronted

 \rightarrow Need to use DATA to normalize backgds

Strategies : Trigger, Tools and event preselection

Strategies for Single-top at the LHC

Common Pre-selection

Triggers for single-top events

- Inclusive leptons
- Lepton+jet combined under study

Selection of a leptonic W decay:

- One high p_T lepton
- High missing Energy
- **Rejection of top pair events:**
 - Jet Multiplicity : 2 ≤ Njet ≤ 4 with p₁^{jet} ≥ 30 GeV/c
- Rejection of dilepton (top) pair:
 - 2ndary isolated lepton Veto
 - Define orthogonal e/μ analyses
- Selection of a leptonic top:
 - at least 1 b-tagged jet

Individual selections

Selection of specific topologies

Three channels have (very) distinct features

Analyses in bin of jet as function of N(b-tag)

Cut-based analyses

Complemented by MultiVariate techniques

Systematic uncertainties

Same order of stat. errors (will be dominating)

Strategies for Single-top at the LHC

Common Pre-selection

Triggers for single-top events

- Inclusive leptons

- Lepton+jet combined under study

Selection of a leptonic W decay:

- One high p_T lepton
- High missing Energy

Rejection of top pair events:

- Jet Multiplicity : $2 \le Njet \le 4$ with $p_T^{jet} \ge 30 \text{ GeV/c}$

Rejection of dilepton (top) pair:

- 2ndary isolated lepton Veto
- Define orthogonal e/ μ analyses

Selection of a leptonic top:

- at least 1 b-tagged jet

Individual selections

Selection of specific topologies

Three channels have (very) distinct features

Analyses in bin of jet as function of N(b-tag)

Cut-based analyses

Complemented by MultiVariate techniques

Systematic uncertainties

Dominate early the stat. errors

Single-top Preselection : triggers

Electron Trigger

Inclusive electron : (e25i OR e60) L1+L2+EF combined Performance on MC top samples: turn-on : ε_{trig}~80-90% Gain of 2-3% by adding e60 (no isolation)

Single-top Preselection : triggers

Muon Trigger for single-top Muon trigger MU20 :

L1+L2+EF combined

Performance on MC top samples :

turn-on : ε_{triα}~80-90%

Tools for Single-top : TRF tag

Use combinations of jet's TRF weights to compute the event probability (weight) for an evt to be seen as : → 1 b inclusive, 1-b exclusive, → 2-b inclusive etc...

Tools for SingleTop : TRF tag

Tagging Rate Function (TRF)

Tagging Rate Function :

Light jet may be mistagged as b-jet :

 \rightarrow Use of parametrization as f(p_T, η) from ATLFAST

Parametrization used to affect a weight to:

- a b-jet to be seen as a b-jet
- a c-jet to be seen as a c-jet, b-jet
- a light jet to be seen as a b-jet

→ 2-b inclusive etc...

Tools for SingleTop : TRF tag

Tagging Rate Function (TRF)

Tagging Rate Function :

Light jet may be mistagged as b-jet :

 \rightarrow Use of parametrization as f(p_T, η) from ATLFAST

Parametrization used to affect a weight to:

- a b-jet to be seen as a b-jet
- a c-jet to be seen as a c-jet, b-jet
- a light jet to be seen as a b-jet

→ 2-b inclusive etc...

Individual single-top Analyses

Single-top Pre-selection

Single-top Pre-selection

Single-top t-channel

Performance

Signal yields $\epsilon \approx 1-2\%$ and N(1fb⁻¹) ~ 7,000 events S/B ~ 47%, S/ \sqrt{B} ~ 12.4 σ and $\sqrt{(S+B)/S}$ ~ 8.4% at 1fb⁻¹ Measurement systematically limited

Single-top t-channel

Performance

Signal yields

 $\epsilon \approx 1-2\%$ and N(1fb⁻¹) ~ 7,000 events S/B ~ 47%, S/ \sqrt{B} ~ 21 σ and $\sqrt{(S+B)/S}$ ~ 5.6% at 1fb⁻¹ Measurement systematically limited

W+t channel cross-section

Performance

Analysis in bins of N(jet) and N(b-tag)

Develop an MVA in each multiplicity bin: 2 jets : $S/B \sim 7.1\%$ 3 jets : $S/B \sim 8.8\%$ 4 jets : $S/B \sim 4.8\%$ $\Rightarrow S/\sqrt{B} \sim 12.4\sigma$ and $\sqrt{(S+B)/S} \sim 8.4\%$ at 1fb⁻¹

W+t channel cross-section

Analysis in bins of N(jet) and N(b-tag)

Develop an MVA in each multiplicity bin: 2 jets : $S/B \sim 7.1\%$ 3 jets : $S/B \sim 8.8\%$ 4 jets : $S/B \sim 4.8\%$ $\Rightarrow S/\sqrt{B} \sim 12.4\sigma$ and $\sqrt{(S+B)/S} \sim 8.4\%$ at 1fb⁻¹

s-channel cross-section

Strategy	∭ b
Select "2b0j" final state:	
– 2 b-tagged jets	
– 3 rd jet veto	
Develop specific likelihoods against:	е,µ /
 Top pair "di-lepton", "τ+lepton" 	h1
 Top pair "lepton+jets" 	
– W+(b)jets and W+jets	
Using specific sets of discriminant variab	oles

b-tagged jets	: $\Delta R(b_1, b_2), \eta_{b1}, \eta_{b2}, p_T^{b1}, p_T^{b2}$
b-jets and lepton	: ΔR(lep,b ₂), ΔR(lep,b ₁)
b-jets and W(lv) mas	s: M(W,b ₁), M(W, b ₂)
Total energy	: H _T (jets), mE _T +p _T ^{lep} , M _{TOT} (jets)
Event shape	: Sphericity, Aplanarity

Select only the variables with a power > threshold → Form L(tt→I+jets), L(tt→τ+jets), L(Wjet) etc... Combine likelihoods into one discriminant

Performance

Event yields: $\epsilon \approx 1-2\%$, S/B~12-18% S/ $\sqrt{B} \sim 7\sigma$ and $\sqrt{(S+B)/S} \sim 19\%$ at 10 fb⁻¹ Stat. and systematics limited

s-channel cross-section

Performance

Event yields: $\epsilon \approx 1-2\%$, S/B~12-18% S/ $\sqrt{B} \sim 7\sigma$ and $\sqrt{(S+B)}/S \sim 19\%$ at 10 fb⁻¹ Stat. and systematics limited

s-channel cross-section

Select "2b0j" final state: - 2 b-tagged jets - 3rd jet veto e,μ **Develop specific likelihoods against:** - Top pair "di-lepton", "τ+lepton" - Top pair "lepton+jets" - W+(b)jets and W+jets Using specific sets of discriminant variables W* channel Preliminary W* channel Preliminary **90**F Likelihood W* vs W→ µ+jets Likelihood W* vs tt-+jets 140 80 Number of events in L=1fb Number of events in L=1fb 120 s-channel s-channel 70 t-channel [muon channel] t-channel [muon channel] Number of events Number of events 60 ttī→u + jets ttī→u + jets tī— μµµ/e μ tī—uu/eu 50 tt¯→ια /π /π+jets tt¯→ut /tt /t+jets Wbb→µ + jets Wbb→µ + jets 40 Wjj**.**→µ + jets Wjj, , , + jets 30 40 20 20 10

Performance

0.1

0.2

0.3

0.4 0.5

0.6

0.7

0

Strategy

Event yields: $\epsilon \approx 1-2\%$, S/B~12-18% S/ $\sqrt{B} \approx 7\sigma$ and $\sqrt{(S+B)/S} \approx 19\%$ at 10 fb⁻¹ Stat. and systematics limited

0.8 0.9

likelihood

0.8 0.9

likelihood

0.7

b

00

0.1

0.2 0.3

0.4

Methods used for the s- and Wt- channels

b-tagging performance uncertainties Use SV1 and IP2D weight variations :

 \rightarrow vary b-tag efficiency with corresponding mistag rates

b-tagging performance uncertainties Use SV1 and IP2D weight variations :

→ vary b-tag efficiency with corresponding mistag rates
 Vary b-tag efficiency with corresponding mistag rates
 → Expected effects ~8% (s-chan) and ~5% (t-)

Jet Energy scale

Produce distributions for +/-10% variation

Compute difference in efficiency (cut-based A.)

Apply MVA to new distributions (trained on 0-bias evts)

→ Expected effects ~4-5%

IS/FS Radiation Modeling

Select low jet multiplicity events

Very sensitive to gluon radiation modeling

b-tagging performance uncertainties Use SV1 and IP2D weight variations :

→ vary b-tag efficiency with corresponding mistag rates
 Vary b-tag efficiency with corresponding mistag rates
 → Expected effects ~8% (s-chan) and ~5% (t-)

Jet Energy scale

Produce distributions for +/-10% variation

Compute difference in efficiency (cut-based A.) Apply MVA to new distributions (trained on 0-bias evts) → Expected effects ~4-5%

IS/FS Radiation Modeling

Select low jet multiplicity events

Very sensitive to gluon radiation modeling

Now defining samples varying the parameters relevant to ISR/FSR description in PYTHIA

- ISR/FSR MC production undergoing

. . .

b-tagging performance uncertainties Use SV1 and IP2D weight variations :

→ vary b-tag efficiency with corresponding mistag rates
 Vary b-tag efficiency with corresponding mistag rates
 → Expected effects ~8% (s-chan) and ~5% (t-)

Jet Energy scale

Produce distributions for +/-10% variation

Compute difference in efficiency (cut-based A.) Apply MVA to new distributions (trained on 0-bias evts) → Expected effects ~4-5%

IS/FS Radiation Modeling

Select low jet multiplicity events

Very sensitive to gluon radiation modeling

→ Under study (Switch ON/OFF ~ $\Delta\sigma/\sigma$ ~10%!)

Background Estimates

W+jets MC production : : $\Delta\sigma/\sigma \sim 15-20\%$?

Studies using AlpGen (rescaled to NLO/MCFM)

Top pair : Δσ_{tt}/σ_{tt}~ 12%

Tests AcerMC vs MC@NLO

➔ Expected effects of 8-10% on sgtop cross-section

→ Will need to use measurement from data

Event with plle-up

Samples being produced

Conclusion & perspectives

SingleTop at the LHC

More than 80k recorded events a year

Systematics limited measurements ~ 10-14%

Cross-section measurements :

Should lead to V_{tb} at a few % level Will be sensitive to anomalous couplings, FCNC Will probe models with extra boson W', H[±] (2HDM)

SingleTop within the CSC framework

Reconstruction Performance :

Object reco perf. Estimated (dependence upon release #) Set of Triggers designed

Strategies for early data established:

Will be early stat+systematics limited measurements

- → b-tagged jet performance crucial
- → JES determination
- → Modeling of backgrounds
- Cut-based complemented by multiVariate analyses
 - \rightarrow signal extraction delicate (s- and Wt-)

Will require important MC important tuning to data:

Top pair, the main background

W+jets will still be there...

22

RecoPerformance on Single-top : Jets

Ntuple Versions v1212 : 1 mm bug v1213 : bugFixed (AOD)

Resolution in p_T ~8.6%-9.3%

Reconstruction
efficiency $p_T^{jet} \ge 15 \text{ GeV/c}$
 $|\eta^{jet}| \le 5.0$
[t channel] :
94.2%[s channel] :
94.4%[Wt channel] : 90.4%
[Wt channel] : 94.3%

p_T cut=15 GeV/c DeltaRcutoff=0.3

Single Top : Event Selection

Procedure

(1) Select and tag event

- 1 high-p_T lepton
- high missing Energy
- at least 2 high-p_T jets
- at least 1 high-p_T b-tagged jet

(2) Discriminate vs non-top background

- Reconstruct a Top mass M_{lvb}
- Use event shape & high H_T or M_{TOT}

(3) Discriminate vs top backgrounds

- Number of b-jets
- Event topology

	σ x BR (pb)	
Wg →(lv)b qb	54.2	
Wt \rightarrow (jj) (lv)b	17.8	
$W^{\star} \rightarrow (Iv)b b$	2.2	
W+jets → Iv+jets	3,850	Main backgrounds :
W+QQ→ lv+QQ	66.7	– ttbar $: \sim 1/100$, Δ theo~10%
WZ →lv+jets	3.4	– W+jets : ~ 1/2000
WW \rightarrow Iv + jets	17.1	→ Use of DATA !
tt \rightarrow (lv)b (lv)b	38.2	
tt \rightarrow (lv)b (jj)b	242.8	

Uncertainties on PDF's

PDF Uncertainty estimates

Affects the cross-section

May affect also the shapes and efficiency

- → Assess effects on selection efficiencies / channel
- \rightarrow MC production (evgen, FastSim) undergoing for PDF's sets

PAF 2007 / SingleTop

14