Higgs Searches @ the Tevatron

P.A.F, September 12th 2007, Gregorio Bernardi, LPNHE-Paris for the CDF and DØ Collaboration

- Introduction to the Higgs Mechanism
- Tevatron & Detectors
- Standard Model Higgs Searches
- Discovery Prospects
- Beyond the S.M. Higgs Searches
- Conclusions

In earlier studies, the Tevatron sensitivity in the mass region above LEP limit (114 GeV) was estimated to start at ~2 fb⁻¹

with 8 fb⁻¹: exclusion would be 115-135 GeV & 145-180 GeV,

Now, we are:

- \rightarrow optimizing analysis techniques, understanding detectors better
- → measuring SM backgrounds (ttbar, Zbb, Wbb, WW, single top!)
- → Placing first Combined Higgs limits and compare to the prospects

Run II Integrated Luminosity

19 April 2002 - 5 August 2007

The Upgraded DØ detector in Run IIb

6

Trigger: L1 Calorimeter trigger
Silicon vertex detector: Layer 0

SM Higgs boson production

- gg fusion
 - Dominates at hadron machines
 - Usefulness depends on the Higgs decay channel
- WH, ZH associated production
 - Important at hadron colliders since can trigger on 0/1/2 high-p_T leptons and MET

7

- ttH and bbH associated production
 - High-p_T lepton, top reconstruction, b-tag
 - Low rate at the Tevatron

- Vector Boson Fusion
 - Two high-p_T forward jets help to "tag" event

- Important at LHC, being studied at DØ Gregorio Bernardi / LPNHE-Paris

Search strategy:

- M_H <135 GeV: associated production WH and ZH with H→bb decay Backgrounds: top, Wbb, Zbb...
- M_H >135 GeV: gg →H production with decay to WW* or WH→WWW* Backgrounds: WW, DY, WZ, ZZ, tt, tW, ττ

- H \rightarrow WW* \rightarrow IvIv

Selection Strategy

- Presection:
- Remove QCD and Z→I+I-:
- Higgs Mass Dependent Cuts: Invariant Mass (M_{I+I-}); Min. Transverse Mass Sum of lepton p_T^{I} and $E_T (\Sigma p_T^{I} + E_T)$

 $H_T = \Sigma P_T^{jet} < 100 \text{ GeV}$

F∕_T > 20 GeV

- Anti tt(bar) cut:
- Spin correlation in WW pair: $\Delta \phi(l,l) < 2.0$

Now measured at the Tevatron by both expts. in agreement with NLO calculation: ~13.5 pb

Gregorio Bernardi / LPNHE-Paris

 $L \sim 0.9 \text{ fb-1 in } H \rightarrow WW^* \rightarrow mu-mu$

lepton ID, trigger, opposite charge leptons

 $L \sim 1.7 \text{ fb-1 in H} \rightarrow WW^* \rightarrow e-mu$

$H \rightarrow WW^* \rightarrow ee / e\mu / \mu\mu$ (~1 fb⁻¹)

10

Missing Transverse Energy > 20 GeV Cut (to suppress $Z/\gamma^* \rightarrow I^+I^-$ background)

H→WW* : final selection

$H \rightarrow WW^* / Neural Net \& \mu\tau @ Dzero$

μe final state

(normalised to $Z \rightarrow \tau_e \tau_\mu$)

$\mu \tau_{had}$ final state

 hadronic tau reconstruction challenging at hadron collider
 Z→τ_μτ_{had} has been observed
 adds sensitivity, no NN yet, not yet Included in the combination

Associated Higgs Production

Expected/Observed Events in 1.0fb ⁻¹ mH=115 GeV, 70 <djmass<130 gev<="" th=""></djmass<130>					
<u>Channel</u>	<u>Signal</u>	<u>Bkgd</u>	<u>Data</u>	<u>S/ sqrt(B)</u>	
WH→Ivbb 2Tag	1.45	86.6	91	0.156	
wн→Ivbb 1Tag	1.48	365.2	339	0.077	
WH/ZH→ MET+bb	0.83/0.54	55.3	63	0.184	
ZH→IIbb	0.37	19.8	17	0.083	

ZH $\rightarrow vv$ bb channel has large cross efficiency from WH signal (lost/undetected lepton + hadronic tau decays: $W \rightarrow \tau v$) \rightarrow almost as sensitive although cross-section is lower.

SM Higgs Searches @ **Tevatron:** WH→Ivbb

- *x* Select events by utilizing vector-boson decay signatures
 - X Require one(two) high-pT leptons: pT > 20(15) GeV)
 - **x** Neutrinos manifest as missing transverse energy
 - x WH→Ivbb: MET > 20 GeV, ZH→IIbb: MET should be small!!
 - **x** Reconstruct vector boson mass
- *x* Use "OR'ing" of muon triggers: 100% efficiency & +15% in sensitivity

W→Iv & ZH→II + Jets

Selecting $H \rightarrow bb$ Events

WH \rightarrow **I** $_{V}$ **bb** / **Neural Net @CDF**

Neural Network trained on event kinematics

two exclusive samples using different b tagging algorithms

21

CDF Run II Preliminary (1.7 fb⁻¹) CDF Run II Preliminary (1.7 fb⁻¹) $\sigma(p\overline{p_{a}} WH) \times BR(H \rightarrow b\overline{b})/SM_{e}$ Number of events 35 Data Observed Data W+HF Mistag 30 tt (6.7pb).Single top Pseudo-Experiment $\pm 1\sigma$ Diboson NonW NLO SM Higgs (Theoretical) 25 Higgs (120 GeV) × 10 Background error 20 15 10 10 E 5 0 1 Ericit to the test the test to the test 0.2 0.3 0.4 0.5 0.7 0.1 0.6 105 110 115 120 125 130 135 140 145 150 155 NNopHiggs120 m_b(GeV/c²)

m_H = 115 GeV

 $\frac{\sigma_{95}(L = 1.7 \text{ fb}^{-1})}{\sigma_{95}(L = 1.0 \text{ fb}^{-1})} \simeq 1.7$

Sensitivity increased linearly with luminosity: - more b tagging channels - Neural Net

WH→Ivbb @ Dzero

1 'tight' b-tag

2 'loose' b-tags

 $L = 1.7 \text{ fb}^{-1}$

Four samples:

- electron, muon
- 1 b tag, 2 b tags

major background:

W plus b-jetstop pairs

variables used to train Neural Net

WH \rightarrow **I** ν **bb** / Neural Net @ Dzero

ZH \rightarrow_{VV} **bb** / **Dijet** mass

- Improved event selection includes:
 - Two acoplanar jets with:
 - E_T > 20 GeV
 - $E_T^{miss} > 50 \text{ GeV}$
 - Sum of scalar jet $E_T < 240 \text{ GeV}$

Increased statistics compared to our previous result on 0.26 fb⁻¹

Same analysis used for WH \rightarrow Ivbb with missed lepton \rightarrow improves the combined WH limit

Bkgd. composition (%)			
Wjj/Wbb 30			
Zjj/Zbb	20		
Instrumental	15		
Тор	32		
WZ/ZZ	3		

25

ZH $\rightarrow v v bb$ / @CDF

Backgrounds :

- W+heavy flavour jets
- Z +heavy flavour jets

- top pairs

$ZH \rightarrow IIbb$

$\textbf{ZH} \rightarrow \textbf{IIbb}$ / ~2D NN @ CDF

28

Separate NN trained to reject 2 main backgrnd processes:

LEP: Tevatron/LHC: low background, small systematics high background, large systematics

Background only (b) and signal plus background (s+b) hypotheses are compared to data using Poisson likelihoods.

Probability density function is obtained through Gaussian smearing.

Systematic uncertainties are included in the likelihood ('profile likelihood')

Background is constrained by maximising profile likelihood ('sideband fitting').

Tevatron experiments use LEP CL_s (modified frequentist) and Bayesian methods

Systematics, including correlations, taken into account:

Main systematics (depending on channel):

- luminosity and normalisation
- QCD background estimates
- input background cross-sections
- jet energy scale and b-tagging
- lepton identification

Limit setting approaches agree to within 10%

DØ Channels

CDF Combination

CDF II Preliminary

SUMMER 2006

Expected Ratios to SM

5.0 × SM at $m_{\rm H}$ =160 GeV

Tevatron Run II Preliminary

SM Higgs Summary

First time with essentially complete result

All channels have been analyzed with >1 fb⁻¹ of data Full impact of systematics uncertainties is included Analyses are steadily improving due to optimization

Combined limit looks very promising

- High mass region benefits a lot from $H \rightarrow WW^*$ type analyses (H and WH production), but low mass as well, as low as 120 GeV \rightarrow enhanced sensitivity at low mass.
- Our outlook for the future looks very interesting LHC experiments has work hard to get the signal before Tevatron, if the Higgs is light (<130 GeV) But the Tevatron has insight also if it is close to 160 GeV and can exclude at 95%CL from 115 to 185 GeV. Barring accidents, the Tevatron could have evidence by 2009-2010, if it's there as the Standard Model predicts

If not, maybe it is a Supersymmetric Higgs !

Higgs Bosons in the MSSM

36

- **Two Complex Higgs Doublets needed to avoid anomalies**
- Eight Degrees of Freedom minus W^{+,-}, Z⁰ longitudinal polarization states→five scalars predicted: h, H, A, H⁺, H⁻
- CP-conserving models: h, H are CP-even, A is CP-odd
- At tree-level, two independent Parameters:
 - m_A
 - $tan\beta = ratio of VEV's$
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - X_t (related to the trilinear coupling A_t) \rightarrow stop mixing)
 - M₂ (gaugino mass term)
 - μ (Higgs mass parameter)
 - m_{gluino}(comes in via loops)

These 5 parameters intervene via radiative corrections, we study 2x2 scenarios → (cf M. Carena et al., hep-ph/051123)

	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
x,	2 TeV	0
М2	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

Couplings of MSSM Higgs Relative to SM

W and Z couplings to H, h are suppressed relative to SM (but the sum of squares of h⁰, H⁰ couplings are the SM coupling). Yukawa couplings can be enhanced at high tanβ

Interesting feature of many MSSM scenarios: $[m_h, m_H] \approx m_A$ at high tan β

Br(A⁰ \rightarrow bb) ~ 90% and Br(A⁰ \rightarrow $\tau^{+}\tau^{-})$ ~ 10% almost independent of tan β (some gg too).

Our two benchmark scenarios:

- m_h-max: Higgs boson mass m_h close to the maximum possible value for a given tanβ
- no-mixing: vanishing mixing in stop sector
 - \rightarrow small mass for h.

h→bb+b[b] Search

and $h \rightarrow bb$

- *x* Select at least three b-tagged jets with $p_T > 40, 25, 15 \text{ GeV}$
 - X Invariant mass of two leading jets peaks at Higgs mass
- **X** Backgrounds estimated from data
 - X Shape taken from double-tagged dijet mass spectrum
 - **X** Rate normalized outside signal window for each point in m_A and tan β plane
- **X** Important mass-width effect
- X Reasonable agreement between data and predicted background → proceed to set upper limits on MSSM hb(b) production

hb (b) \rightarrow bb b(b) Search

$gg \rightarrow h, A \rightarrow \tau^+ \tau^-$ Channel

- Large production cross-section
- Tau leptons are distinct from QCD background
- **b(b)** $\tau^+\tau^-$ channel is possible too we're working on it.
- Useful $\tau^+\tau^-$ decay modes \longrightarrow one hadronically decaying τ and
 - e-mu channel (low BR, but low bckgd)
- Final state: opposite sign tau pair and missing transverse energy
- Signal would stand out as enhancement from background in the visible mass, M_{vis} =sqrt ($p_{\tau,1}$ + $p_{\tau,2}$ + p_t)2
- Standard Model backgrounds
 Z: irreducible background
 Z/γ*→ee/µµ, multi-jet, W→Iv+jet
 (rejected with M_W<20 GeV)</p>
 boson (WW,WZ,ZZ)

Data/Background:

- Data Sample, L =1 fb⁻¹, recorded by single Muon Trigger
- Standard Model background is simulated using Pythia 6.2
- multi-jet background determination from data: $\mu + \tau_h$: inverted lepton isolation criteria

	Mod e	Fra (%)	Comments
D	i€ _e τ _e	3	Large DY bg
	$ au_{\mu} au_{\mu}$	3	Large DY bg
	τ _e τ _μ	6	Small QCD bg
	^τ e ^τ h	23	Large BR, medium bg
	τ _μ τ _h	23	Large BR, medium bg
	$\tau_{h}\tau_{h}$	41	Large QCD bg

Tau Identification at DØ

- **X** Neural network-based ID
- **x 3 NNs for 3 distinct tau types:**

Gregorio Bernardi / LPNHE-Paris

Performance for p_T>15 GeV

Agreement with $Z \rightarrow tau-tau$ decays

Factor ~40 reduction in bkgd for 30% loss in tau signal

Similar analysis at CDF and Dzero: use Mvisible=sqrt (p_{\u03c4},1+p_{\u03c4},2+pt)2

CDF: Combines e+h, $\mu+h$, $e+\mu$ tau decays

h \rightarrow $\tau^+\tau^-$ Search @ Dzero

Mass-dependent NN optimization for signal/bkgd separation

(Mvis, mu, tau kinematic variables)

After the published bh \rightarrow bbb search on low statistics , new searches for MSSM Neutral Higgs Bosons in bbb and $\tau\tau$ final states have been performed using 1 fb⁻¹ data taken by CDF and DØ in Run II No significant indication for a signal has been found, but hints must be studied with more statistics. So far, upper limits were derived at 95% CL

results are comparable in sensitivity between CDF and DØ

• Susy Combination with hb(b) \rightarrow bbb(b) has been performed on low statistics \rightarrow will be updated for Moriond 2008

•Updates with 2-3 fb⁻¹ in progress

• With some sensitivity progress MSSM Higgs could be, by 2009, well constrained in some of these models up to 180 GeV, since, for instance, LEP exclude them up to 15-20 in tan b in the no-mixing scenario

Conclusions

Higgs physics in Run II of the Tevatron looks promising: exciting time in front of us

Backup Slides

SM Backgrounds

Electroweak background: W(+jets), Z(+jets), WW, WZ, ZZ, also tt and single top

kinematic distributions using Monte Carlos: PYTHIA (LO + parton shower) ALPGEN (LO+MLM parton shower/matrix element matching) COMPHEP (LO, fixed order matrix element) MCFM (NLO) MC@NLO (NLO)

normalised using (N)NLO cross-sections and K factors verified by data

Jet production (QCD) and instrumental background

→ data using control samples and/or PYTHIA

Typical signal/background ratio of 1/100 in final distributions: requires advanced analysis techniques (e.g. NN, Limit Setting..) Gregorio Bernardi / LPNHE-Paris

Gregorio Bernardi / LPNHE-Paris

 $L = 1 \text{ fb}^{-1}$

	ee	e μ	μμ
expected background	20.6	18.0	5.0
data	19	15	5
WH(160)	0.1	0.2	0.1

WW → tau_mu tau_h

Selection criteria $m_{\rm H} = 120 \ m_{\rm H} = 140 \ m_{\rm H} = 160 \ m_{\rm H} = 180$ Cut 1 Preselection leptons from primary vertex large tau NN at least one SMT hit for the muon μ and τ not matched with $\Delta R(\eta, \phi) > 0.15$ Cut 2 Missing Transverse Energy \mathbb{E}_{τ} > 20> 20> 20> 20Cut 3 E_T^{Scaled} > 7> 7> 7> 7Cut 4 M_{min}^T $(l, \not\!\!E_T)$ > 45> 35> 40> 45Cut 5 Sum of $p_T^l + p_T^{l'} + \mathbb{E}_{\mathbf{T}}$ 60 - 15070-160 80-180 50 - 140Cut 6 Invariant mass $M_{\mu\tau}$ < 50< 80< 60< 60< 70Cut 7 H_T < 70< 70< 70Cut 8 $\Delta \phi(\mu, \tau)$ < 2< 2< 2< 2

TABLE IV: Number of candidate events observed and background events expected at different stages of the selection for τ type I, $m_{\rm H} = 160$ GeV and $m_{\rm H} = 180$ GeV. Errors are statistical only

Cut	$m_{\rm H} = 160 { m GeV}$ Data Tot. Exp. Bkgd H		$H \to WW$	$m_{\rm H} = 180 \text{ GeV}$ Data Tot. Exp. Bkgd $H \rightarrow WV$		
Preselection $\Delta \phi(\mu, \tau)$	$\begin{array}{c} 1749.00 \pm 41.82 \\ 30.00 \pm 5.48 \end{array}$	$\begin{array}{r} 1719.19 \pm 33.58 \\ 21.66 \pm 2.74 \end{array}$	0.20 0.11	$\begin{array}{c} 1749.00 \pm 41.82 \\ 31.00 \pm 5.57 \end{array}$	1719.19 ± 33.58 24.26 ± 2.87	0.15 0.07
Final Sel. incl.	2.00 ± 1.41	4.63 ± 1.22	0.05	1.00 ± 1.00	1.25 ± 0.60	0.01
Final Sel. excl.	3.00 ± 1.73	1.78 ± 0.68	0.01	3.00 ± 1.73	5.79 ± 1.27	0.03

- Update b-Tagging optimization (as compared to Single-Top result) X
 - **X** Use asymmetric **TIGHT + LOOSE** b-Tagging thresholds for double-tagged jet sample (*gain ~40% in sensitivity*)
 - *x* For WH \rightarrow I_Vbb, separate orthogonal 2 b-tag and 1 b-tag samples to salvage lost efficiency (gain ~15% in sensitivity)

ZH \rightarrow vvbb (WH \rightarrow \checkmark vbb) searches

a

- Missing E_{τ} from $Z \rightarrow vv$ and 2 b jets from $H \rightarrow bb$
 - Large missing $E_{T} > 50 GeV$
 - 2 acoplanar b-jets with $E_T > 20$ GeV, $|\eta| < 2.5$
- Backgrounds
 - "physics"
 - W+jets, Z+jets, top, ZZ and WZ
 - "instrumental"
 - QCD multijet events with mismeasured jets
 - Large cross section & small acceptance
- Strategy
 - Trigger on events with large missing H_T (vector sum of jets' E_T)
 - Estimate "instrumental" background from data, physics bkd from simulation
 - Search for an event excess in di-jet mass distribution
- Reduce "instrumental" background
 - Jet acoplanarity $\Delta \phi$ (dijet) < 165°
 - define missing energy/momentum variables
 - E_{T} calculated using calorimeter cells
 - $\mathbf{M}_{T} = |\Sigma \mathbf{p}_{T}(\mathbf{jet})|$... jets
 - And select on their asymmetry
 - Asym $(\vec{E}_T,\vec{H}_T) = (\vec{E}_T \vec{H}_T)/(\vec{E}_T + \vec{H}_T)$

$ZH \rightarrow IIbb / NN @ D0$

- all channels important for final sensitivity

- **X** SHWG/HSG quoted at 10% dijet mass resolution
 - **X** Bad news: We're currently at 17-18%
 - X Good news: Don't need 10% to get expected factor in lumi
- X Several techniques available: energy-flow algorithms, constrained fitting of jets+MET system, ISR/FSR jet recovery

CDF uses a Bayesian approach

- Use Bayesian posterior probability
- Assume flat prior density for the number of Higgs events
- Combined Binned Poisson Likelihood:

$$\mathcal{L}(R, \vec{s}, \vec{b} | \vec{n}) = \prod_{i=1}^{N_C} \prod_{j=1}^{N_{bins}} \mu_{ij}^{n_{ij}} e^{-\mu_{ij}} / n_{ij}!$$

Combined Posterior Density Function:

$$p(R|\vec{n}) = \int d\vec{s} \int d\vec{b} \mathcal{L}(R, \vec{s}, \vec{b}|\vec{n}) \times s_{tot} / \int dR \int d\vec{s} \int d\vec{b} \mathcal{L}(R, \vec{s}, \vec{b}|\vec{n}) \times s_{tot}$$

DØ uses the CLs (LEP) Method

the CL_{s} confidence interval is a normalization of CL_{s+B} CL_{s+B} = signal + bkgd hypothesis, CL_{B} = bkgd only hypothesis CL_{s} = CL_{s+B}/CL_{B} . CL_{s+B} & CL_{B} are defined using a "test statistic" Test statistic used is the Log-Likelihood Ratio (LLR=-2 ln Q) generated via Poisson statistics ($Q=e^{-(s+b)}(s+b)^{d}/e^{-b}b^{d}$) s,b,d=sig.,bkd,data)

Tevatron Higgs combination is done with both methods → they give results compatible within 10%.

G

- $H_T = \left| p_T^{\ell} \right| + \left| p_T^{had} \right| + \left| \not{E}_T \right| > 55 \text{ GeV}$
 - Ws removed by a cut on the MET projected on the bisector between τ s.

Search strategy:

→ 2 high P_t leptons and missing E_t → WW comes from spin 0 Higgs:

leptons prefer to point in the same direction.

But Higgs mass peak cannot be reconstructed due to the presence of 2 ν \rightarrow look for an excess CDF and DØ already published on 0.3-0.4 fb⁻¹

