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Introduction

This work: development of Deep Learning (DL) algorithm to improve sensitivity in Belle II.

The Standard Model is very successful but incomplete (CP violation, dark matter, unification,

neutrino masses, etc.).

Belle II: precision measurements. State-of-the-art of detector, hardware, and software technologies.
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Section 1

Scientific Context
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Belle II Experiment

Belle II Experiment

Asymmetric e+e−

experiment mainly at
the Υ(4S) resonance
(10.58 GeV)
e+

B̄

B

e−

Υ(4S)

Focus on B, charm
and τ physics

KEKB/Belle SuperKEKB/Belle II
Operation 1999–2010 2019–2027

Peak luminosity 2.11× 1034 cm−2s−1 8× 1035 cm−2s−1

Integrated luminosity 1 ab−1 (772 million BB̄ pairs) 50 ab−1

Selective background Monte Carlo simulation at Belle II - James Kahn, Andreas Lindner, Thomas Kuhr 5th November 2019 2/13

Focus on B, charm
and τ physics. Can
measure rare
processes B < 10−5.

Chapter 4. Full Event Interpretation 4.1. Tag-side reconstruction

Υ(4S)
B−tag B+

sig

ντ

τ+

signal-sidetag-side

Figure 4.1.: (Left) a common tag-side decay B− → D0[→ K0
S[→ π−π+]π−π+]π− and

(right) the signal-side decay B+ → τ+ντ investigated in Chapter 5.

4.1. Tag-side reconstruction

The initial four-momentum of the produced Υ(4S) resonance is precisely known.
Therefore, the reconstruction of the tag-side B meson allows to recover informa-
tion about the signal-side, which would be otherwise inaccessible. The recovered
information includes:

the consistency of quantities like the charge or the flavour;

the four-momentum of the Btag and consequently the Bsig meson;

the decay-vertex and the decay time difference ∆t between both mesons;

the event-type like Υ(4S) → B0B0 or Υ(4S) → B+B−;

and the assignment of tracks and clusters to either the Btag or the Bsig meson.

Historically, there were two distinct approaches to tagging at B factories: inclusive
and exclusive.

They differ in their tagging efficiency (that is the fraction of Υ(4S) events which
can be tagged), their tag-side efficiency (that is the fraction of Υ(4S) events with
a correct tag) and in the quality of the recovered information, which determines
the purity (that is the fraction of the tagged Υ(4S) events with a correct tag-side)
of the tagged events. These three properties are the key performance indicators
used in this thesis. They are closely related to important properties of a specific
analysis: The tagging efficiency is important to judge the disk-space required for
skimming, that is the number of events which have to be considered for the analysis;
the tag-side efficiency influences the effective statistics of the analysis, and the purity
is related to the signal-to-noise ratio of the analysis.

Exclusive tagging provides the assignment of tracks and clusters to either the tag-
side and or the signal-side, whereas the inclusive tag requires this assignment as
input. The advantages and disadvantages of the different approaches are visualized
in Figure 4.2.

68

KEKB/Belle SuperKEKB/Belle II
Operation 1999–2010 2019–2027

Integrated luminosity 1ab−1(772 million BB̄ pairs) 50ab−1
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Replacing the Full Event Interpretation (FEI)

Goal: Create an algorithm that supersedes the
FEI.

Why: FEI is a hierarchical machine learning
algorithm. Design issues:

6 distinct stages with Fast BDTs.
Choice of kinematic variables to exploit.
Hard-coded reconstructed sub-decay
processes.

How: This work(graFEI): end-to-end method to
reconstruct decays using simple kinematic
information by example.

S. Cunliffe ·Prospects for rare B decays at Belle II

Parent Tagging Belle II FEI Belle MC Belle II FEI Belle

B±
Hadronic 0.61% 0.49% 0.28%
Semi-leptonic 1.45% 1.42% 0.67%

B0 Hadronic 0.34% 0.33% 0.18%
Semi-leptonic 1.25% 1.33% 0.63%

Table 1: Tagging efficiencies for Belle II FEI algorithms determined with simulation of the Belle II and
Belle detectors and the original Belle efficiency evaluated on data. Taken from [27, 29].

clusive decay, such as B → Xsγ as,

ACP =
Γ
[
B̄ → Xsγ

]
− Γ [B → Xs̄γ]

Γ
[
B̄ → Xsγ

]
+ Γ [B → Xs̄γ]

,

∆0+ =
Γ
[
B0 → Xsγ

]
− Γ [B± → Xsγ]

Γ [B0 → Xsγ] + Γ [B± → Xsγ]
,

∆ACP = ACP

[
B± → X±s γ

]
−ACP

[
B0 → X0

sγ
]
.

In all cases, the flavour and CP state of the
parent B is determined from the tag.

Such observables have reduced experimental
systematic effects, as well as reduced theoretical
uncertainty from hadronic form-factors. Exper-
imental measurements are therefore more pre-
cise than the branching fractions, for example
ACP and ∆0+ for B → Xsγ are both around
2% [32,33], for B → Xdγ they are around 30%.
With 50 ab−1 at Belle II, measurements are ex-
pected to reach sub-percent-level precision for
ACP and ∆0+ in B → Xsγ, and around percent
level precision for B → Xdγ. Figure 6 shows
the precision on ACP and ∆ACP as a function
of integrated luminosity collected at the Υ(4S)
resonance.

6.2. Lepton (non) universality and inclu-
sive b → s(e+e−, µ+µ−)

Recent experimental tests of lepton universality
in b→ s`+`− decays have shown deviation from
the SM predictions [1,2]. Deviations are not too
far from statistical significance and are there-
fore the source of much discussion within the
community [5–8]. In addition to these measure-
ments a somewhat longstanding discrepancy
in the angular analysis of B0 → K∗0µ+µ− [3]
has been explored for both B → K∗e+e− and
B → K∗µ+µ− by Belle [4].

In global fits to the Wilson coefficients [6–8],
these discrepancies prefer a non-zero CNP

9 . In

Figure 6: Sensitivity to ACP and ∆ACP in
B → X(s, d)γ decays. To appear in [29].

terms of NP interpretations, models with an ex-
tended electroweak sector, such as a new vector
boson Z ′, have been suggested. There has been
some debate in the theory community about
possible non-NP explanations for these devia-
tions, such as underestimated hadronic uncer-
tainty, or an underestimated contribution from
high-order diagrams involving charm quarks in
the b→ sµ+µ− transition [34].

References [1, 2] present the measurement
of lepton universality ratios conventionally de-
fined,

RK(∗) ≡ B
[
B → K(∗)µ+µ−

]

B
[
B → K(∗)e+e−

] ,

where B is the branching fraction. In
the SM these ratios are predicted to be
very close to unity within the region of the

6

Demonstrating learned particle decay reconstruction with graph neural networks at Belle II - Ilias Tsaklidis 19/06/2020 4/22



Elements of graph theory and strategy
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Section 2

Outline
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Search in literature

GNNs for decay tree reconstruction → novelty.

no out-of-the-box solution.

Graph Convolutional Networks, clustering, graph
pooling, edge contraction. → inefficient

Edge Label prediction using NRI1→ promising.
Neural Relational Inference for Interacting Systems

x xt Δxt

…
Σ

…

Encoder

Σ

Decoder

…

q φ(z|x)

…

v →e

Legend: : Node emb. : Edge emb. : Concrete distribution: MLP : Sampling

e →v v →e v →e e →v

Figure 3. The NRI model consists of two jointly trained parts: An encoder that predicts a probability distribution qφ(z|x) over the latent
interactions given input trajectories; and a decoder that generates trajectory predictions conditioned on both the latent code of the encoder
and the previous time step of the trajectory. The encoder takes the form of a GNN with multiple rounds of node-to-edge (v→e) and
edge-to-node (e→v) message passing, whereas the decoder runs multiple GNNs in parallel, one for each edge type supplied by the latent
code of the encoder qφ(z|x).

The encoder qφ(z|x) returns a factorized distribution of
zij , where zij is a discrete categorical variable representing
the edge type between object vi and vj . We use a one-hot
representation of the K interaction types for zij .

The decoder

pθ(x|z) =
∏T
t=1 pθ(x

t+1|xt, ...,x1, z) (4)

models pθ(xt+1|xt, ...,x1, z) with a GNN given the latent
graph structure z.

The prior pθ(z) =
∏
i 6=j pθ(zij) is a factorized uniform dis-

tribution over edges types. If one edge type is “hard coded”
to represent “non-edge” (no messages being passed along
this edge type), we can use an alternative prior with higher
probability on the “non-edge” label. This will encourage
sparser graphs.

There are some notable differences between our model and
the original formulation of the VAE (Kingma & Welling,
2014). First, in order to avoid the common issue in VAEs of
the decoder ignoring the latent code z (Chen et al., 2017),
we train the decoder to predict multiple time steps and not a
single step as the VAE formulation requires. This is neces-
sary since interactions often only have a small effect in the
time scale of a single time step. Second, the latent distribu-
tion is discrete, so we use a continuous relaxation in order
to use the reparameterization trick. Lastly, we note that we
do not learn the probability p(x1) (i.e. for t = 1) as we are
interested in the dynamics and interactions, and this does
not have any effect on either (but would be easy to include
if there was a need).

The overall model is schematically depicted in Figure 3. In
the following, we describe the encoder and decoder compo-
nents of the model in detail.

3.1. Encoder

At a high level, the goal of the encoder is to infer pair-
wise interaction types zij given observed trajectories x =
(x1, ...,xT ). Since we do not know the underlying graph,
we can use a GNN on the fully-connected graph to predict
the latent graph structure.

More formally, we model the encoder as qφ(zij |x) =
softmax(fenc,φ(x)ij,1:K), where fenc,φ(x) is a GNN act-
ing on the fully-connected graph (without self-loops). Given
input trajectories x1, ...,xK our encoder computes the fol-
lowing message passing operations:

h1
j = femb(xj) (5)

v→e : h1
(i,j) = f1e ([h1

i ,h
1
j ]) (6)

e→v : h2
j = f1v (

∑
i 6=j h

1
(i,j)) (7)

v→e : h2
(i,j) = f2e ([h2

i ,h
2
j ]) (8)

Finally, we model the edge type posterior as qφ(zij |x) =
softmax(h2

(i,j)) where φ summarizes the parameters of the
neural networks in Eqs. (5)–(8). The use of multiple passes,
two in the model presented here, allows the model to “dis-
entangle” multiple interactions while still using only binary
terms. In a single pass, Eqs. (5)–(6), the embedding h1

(i,j)

only depends on xi and xj ignoring interactions with other
nodes, while h2

j uses information from the whole graph.

The functions f(...) are neural networks that map between
the respective representations. In our experiments we used
either fully-connected networks (MLPs) or 1D convolu-
tional networks (CNNs) with attentive pooling similar to
(Lin et al., 2017) for the f(...) functions. See supplementary
material for further details.

While this model falls into the general framework presented
in Sec. 3, there is a conceptual difference in how hl(i,j)

1Neural Relation Inference or Interacting Systems, arXiv:1802.04687v2
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Encoder Architecture

MLPinput nMLPs Edge2NodeNode2Edge Node2EdgeMLP MLPMLP MLP MLP nMLPs MLP

MLP

output 
layer

MLP

nMLPs Edge2Node Node2EdgeMLP MLP MLP nMLPs MLP MLP

Block 1

.

.

.

Block m

Legend

Forward pass

Residual connection

Single MLP

List of MLPs

Transition Layer

Block of layers

MLP

nMLPs

n2e
e2n

All the models are built using the DL library Pytorch.
Many changes wrt initial architecture.
Hyperparameters (Optimization using Optuna): number of MLPs, blocks, hidden nodes per layer; batch size;
learning rate; dropout rate; number of epochs.
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Data produced with Phasespace
Input features: 4 momentum

3o3 dataset
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Experiments’ overview

Train on generic
B-meson
decays

Proof of
concept

First level
reconstruction

Train on 2
datasets

Robustness
to noise

Missing
particles

Unbalanced
dataset

Belle II
benchmark

Complex
kinematic
scenarios

Unbalanced
Belle II
dataset

1 GNNs for particle decay reconstruction.

2 Generalization on different #FSPs
3 Identify and separate two different decays.
4 Robust to noise. Detector related uncertainties.
5 Missing kinematic information (semileptonic events or undetected particles).
6 Demonstration on large dataset.
7 Indicate competition with FEI
8 Include channels not dealt with FEI
9 Demonstration on larger Belle II dataset.
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Section 3

Results
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Proof of Concept

Train on generic
B-meson
decays

Proof of
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GNNs can achieve particle decay reconstruction.
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First Level Reconstruction
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concept
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The model can generalize to different datasets.
Unstable training, scaling of performance: shallow networks.
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Two datasets
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The model can identify different decays.
Deeper model, better training.
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Data with noise
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Model trained on unsmeared data applied to smeared:
Acurracy: 0.9756, Perfect: 0.8891.
Robust model to random noise.
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Missing particles
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Indication for semileptonic tagging.
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Mix of all the Phasespace datasets

Train on generic
B-meson
decays

Proof of
concept

First level
reconstruction

Train on 2
datasets

Robustness
to noise

Missing
particles

Unbalanced
dataset

1 5 9 13172125293337414549535761656973778185899397101105
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy mbad
m5p
m4p
m3p
m2p
m1p
perfect

Padding is used to mix the dataset. Masking is used to train on the padded data efficiently. The
model can reconustruct numerous decays simultaneously.
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Data produced with the Belle II software (basf2)

1 Monte Carlo simulation (no detector simulation yet)
2 Signal side: B → µνµ, easy to separate since only one

FSP
3 Input features: 4 momentum + charge

Decay Channels generated with the Belle II software
Decay Channel NoFSPs Motivation

B+ → D0(→ K+π−π0)π+ 5 benchmark tag side on T.Keck’s
PhD thesis on FEI

B+ → D−(→ π−π+π+)π+π+ 5 two 3-body decays, overlapping
spectra, same FSPs)

B+ → D0(→ K+π−π0)e+νe 5 semileptonic decay to demon-
strate semileptonic tagging

B+ → D0(→ K+π−π0)ρ(→ π−π0) 7 resonances not dealt with FEI,
includes 4 photons that need to be
assigned to the correct π0

B+ → D0(→ K+π−π0)ω(→ π+π−π0)π+ 9 Three 3-body decays, resonances
not dealt with FEI

B+ → D−(→ π−π−π+π0)π+π+π0 9 two 4-body decays

Table 1: Decay channels produced with the Belle II software for this work.
All the π0 decay into two photons. All the datasets contain the decay channel
presented here and its charge conjugate
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2nd generation

3rd generation

B
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π πK γ γ
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Benchmark Belle II dataset
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The model can compete with the FEI.
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Complex kinematic scenarios
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Resonance not dealt with FEI.
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Mix of all the Belle II datasets
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Last test before training on generic decays.
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Section 4

Summary
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Conclusions

Proof of concept of a graph based, end-to-end approach for decay tree reconstruction
from example, exploiting simple kinematic variables.

Lowest Common Ancestor matrix contains the necessary information to capture the
structure of a decay tree.

75% of perfectly predicted LCAs on unbalanced data (all the Phasespace datasets).

95% of perfectly predicted LCAs on the benchmark decay tree used by Belle II for
B-tagging.

Efficient predictions on decay channels that FEI doesn’t deal with.
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Outlook
1 Train on generic B-mesons decays.
2 Test the performance of the model on events with extra particles(beam background like

etc.).
3 Train on reconstructed events, after the detector simulation.
4 Understand how the idea depth of the network scales with the #FSPs.

Figure: 6 particles Figure: 7 particles
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Section 5

Backup
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Graph Autoencoder

Autoencoder: A NN that learns a representation (encoding) typically in a lower dimensional space
and then tries to reconstruct the original input (decoding) from this lower representation

The autoencoder from the paper Neural Relational Inference for Interacting Systems is used for
learning the law of Physics that governs the interaction of n-body systems

We use the encoder part for an edge-labelling task. We interpret the learnt edge labels as the
entries of the LCA matrix
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Proof of Concept: 3o3 Overtraining
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Figure: Demonstration of overtraining for the 3o3 dataset with a shallow network
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Elements of Deep Learning

1 Data is split into training and validation set
to monitor overtraining.

2 Input tensors with basic kinematic
information (4 momentum).

3 random initialization of weights.
4 activation function (ELU in this work) turns

off some nodes.
5 Dropout erases some nodes randomly to

fight overtraining.
6 calculation of loss of the final predictions

(using Cross Entropy in this work).
7 calculation and multiplication of dΦ

dwij
with

the learning rate. Update of all the
weights.

Input Layer
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.

x1
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x3

xn
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Figure: Typical Multilayer Perceptron (MLP)
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Learnable parameters and Hyperparameters

Best tuning for mixed datasets
Set bsize lr dropout nhid nBlocks nMLPs DoF

6par 16 0.0011 0.000744 128 8 14 75776
7par 16 0.000072 0.308 128 8 4 34816
8par 16 0.000185 0.133 80 4 14 23680
B+ → D0(→ K +π−π0)π+ 32 0.001 0.008520 512 4 1 45056
B+ → D0(→ K +π−π0))e+νe 32 0.001 0.008520 512 4 1 45056
B+ → D−(→ π−π+π+)π+π+ 64 0.00062 0.1883 128 4 12 33792
B+ → D0(→ K +π−π0)ρ(→ π−π0) 16 0.00036 0.0624 128 4 12 33792
B+ → D0(→ K +π−π0)ω(→ π+π−π0)π+ 16 0.000485 0.0304 128 4 12 33792
B+ → D−(→ π−π−π+π0)π+π+π0 64 0.00117 0.00551 256 4 12 67584
all Phasespace 128 0.001 0.25 1024 2 4 69632
all Belle 128 0.001 0.25 1024 2 4 69632

learnable = [(4 · 2) + (5 · 2) + (2 · nMLPs · 2)] · nblocks] · nhid
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2 missing particles 3o3
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