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Introduction

a This work: development of Deep Learning (DL) algorithm to improve sensitivity in Belle 1.

m The Standard Model is very successful but incomplete (CP violation, dark matter, unification,
neutrino masses, etc.).

a Belle II: precision measurements. State-of-the-art of detector, hardware, and software technologies.
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Section 1

Scientific Context
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Replacing the Full Event Interpretation (FEI)

iPHC g(IT

Tracks Displaced Vertices Neutral Clusters

Goal: Create an algorithm that supersedes the
FEI.
Why: FEl is a hierarchical machine learning
algorithm. Design issues:
m 6 distinct stages with Fast BDTs.
a Choice of kinematic variables to exploit.
a Hard-coded reconstructed sub-decay
processes.
How: This work(graFEl): end-to-end method to
reconstruct decays using simple kinematic
information by example.

Parent Tagging Belle II FEI
Bt Hadronic 0.61%
Semi-leptonic  1.45%
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Elements of graph theory and strategy
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Section 2

Outline
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Search in literature

a GNNs for decay tree reconstruction — novelty.
® no out-of-the-box solution. // . <1
= Graph Convolutional Networks, clustering, graph ‘ / / e
pooling, edge contraction. — inefficient Lﬁ R = Y '*@#' W
m Edge Label prediction using NRI'— promising. .
A \

[Legana: [ Node emb. [: Edge emb. —a: MLP 1i... : Concrete distribution -->:Samp\ing]
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' Neural Relation Inference or Interacting Systems, arXiv:1802.04687v2
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Encoder Architecture
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All the models are built using the DL library Pytorch.
Many changes wrt initial architecture.

Hyperparameters (Optimization using Optuna): number of MLPs, blocks, hidden nodes per layer; batch size;
learning rate; dropout rate; number of epochs.
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Data produced with Phasespace
Input features: 4 momentum
303 dataset
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Data is split into training (90%) and validation (10%) sets.
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. y .
Experl ments’ overview
Proof of First Ievel Train on 2 Robustness Missing Unbalanced Belle Il
concept constructlo datasets to noise particles dataset benchmark

@ GNNs for particle decay reconstruction.

omplex
kinematic
enario
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Experiments’ overview

Proof of First Ievel Train on 2 Robustness Missing Unbalanced Belle Il
concept constructlo datasets to noise particles dataset benchmark

omplex
kinematic
enario

@ Generalization on different #FSPs
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Experiments’ overview

Proof of First Ievel Train on 2 Robustness Missing Unbalanced Belle Il k.:;n"?;.’::
concept constructlo datasets to noise particles dataset benchmark ! en .

@ Identify and separate two different decays.
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Experiments’ overview

Proof of First Ievel Train on 2 Robustness Missing Unbalanced Belle Il
concept constructlo datasets to noise particles dataset benchmark

omplex
kinematic
enario

@ Robust to noise. Detector related uncertainties.
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Experiments’ overview diene  KIT
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Proof of First level Train on 2 Robustness Missing Unbalanced Belle Il C?omple?( Unbalanced B Iﬁa'g on genericy
feconstruction datasets to noise particles dataset benchmark [ 2] Kinematic [—x  Belle Il > -meson
concept scenarios. dataset I decays _

@ Missing kinematic information (semileptonic events or undetected particles).
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Experiments’ overview

Proof of First Ievel Train on 2 Robustness Missing Unbalanced Belle Il
concept constructlo datasets to noise particles dataset benchmark

@ Demonstration on large dataset.
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Experiments’ overview

Proof of First Ievel Train on 2 Robustness Missing Unbalanced Belle Il k'r?;nn?a?((:
concept constructlo datasets to noise particles dataset benchmark ! en .

@ Indicate competition with FEI
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Experiments’ overview

Proof of First Ievel Train on 2 Robustness Missing Unbalanced Belle Il k.:;n"?;.’::
concept constructlo datasets to noise particles dataset benchmark ! en .

@ Include channels not dealt with FEI
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Experiments’ overview

M
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Proof of First Ievel Train on 2 Robustness
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@ Demonstration on larger Belle Il dataset.
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Experiments’ overview

Proof of First level Train on 2 Robustness Missing Unbalanced Belle Il Complex Unbalanced | |¢Fa'g I gENEe ]
feconstruction datasets tonoise | > particles dataset benchmark [ 2] Kinematic [—x  Belle Il > -meson
concept scenarios. dataset I decays

@ GNNs for particle decay reconstruction.

@ Generalization on different #FSPs

@ Identify and separate two different decays.

@ Robust to noise. Detector related uncertainties.

Missing kinematic information (semileptonic events or undetected particles).
Demonstration on large dataset.

Indicate competition with FEI

Include channels not dealt with FEI

Demonstration on larger Belle 1l dataset.
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Section 3

Results
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® mXp: mistakes per GNNSs can achieve particle decay reconstruction.

prediction.
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First Level Reconstruction irnc AT
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The model can generalize to different datasets.
Unstable training, scaling of performance: shallow networks.
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Two datasets irnc AT
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Data with noise @Hc
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Model trained on unsmeared data applied to smeared:
Acurracy: 0.9756, Perfect: 0.8891.
Robust model to random noise.
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Missing particles irnc AT
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Indication for semileptonic tagging.
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Mix of all the Phasespace datasets
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Padding is used to mix the dataset. Masking is used to train on the padded data efficiently. The
model can reconustruct numerous decays simultaneously.
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Data produced with the Belle Il software (basf2) (iPHC A

@ Monte Carlo simulation (no detector simulation yet)

1st generation

@ Signal side: B — v, easy to separate since only one >
FSP

. 2nd generation
@ Input features: 4 momentum + charge N ‘
Decay Channels generated with the Belle II software
Decay Channel N°FSPs | Motivation K
— ti \

B - DY(— Ktr 7% rt 5 benchmark tag side on T.Keck’s 3rd genera |o)n
PhD thesis on FEI N

BY 5 D (»nntnf)ntat 5 two 3-body decays, overlapping
spectra, same FSPs) N

Bt — DY(— K*tn~n0%)etv, 5 semileptonic decay to demon-

'i
strate semileptonic tagging 4th generanon
BT 5 Do Ktn70)p(— m70) 7 resonances not dealt with FEI Tt

includes 4 photons that need to be
assigned to the correct 7°

BT — DV~ K+tr n)w(— ntnn0)rt 9 Three 3-body decays, resonances
not dealt with FEI
Bf > D (rnrn atn)ntatal 9 two 4-body decays

Table 1: Decay channels produced with the Belle II software for this work.
All the 7° decay into two photons. All the datasets contain the decay channel
presented here and its charge conjugate
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Benchmark Belle Il dataset
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Complex kinematic scenarios
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Resonance not dealt with FEI.
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Mix of all the Belle Il datasets

Proof of First level Train on 2 Robustness Missing Unbalanced
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Last test before training on generic decays.
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Section 4

Summary
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Conclusions

a Proof of concept of a graph based, end-to-end approach for decay tree reconstruction
from example, exploiting simple kinematic variables.

a Lowest Common Ancestor matrix contains the necessary information to capture the
structure of a decay tree.

m 75% of perfectly predicted LCAs on unbalanced data (all the Phasespace datasets).

a 95% of perfectly predicted LCAs on the benchmark decay tree used by Belle Il for
B-tagging.

a Efficient predictions on decay channels that FEI doesn’t deal with.
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Outlook

@ Train on generic B-mesons decays.

@ Test the performance of the model on events with extra particles(beam background like
etc.).

@ Train on reconstructed events, after the detector simulation.
@ Understand how the idea depth of the network scales with the #FSPs.

KIT

Institute of Technoloay

Objective Value
—on

n_layers
n_layers

n_blocks n_blocks

Figure: 6 particles Figure: 7 particles
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Section 5

Backup
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Graph Autoencoder

Neural Relational Inference for Interacting Systems

[I.egend: l: Node emb. [Hl: Edge emb. —: MLP {L.._: Concrete distribution --+:Samplmg]

ay(z/x)

Decoder

Encoder

m Autoencoder: A NN that learns a representation (encoding) typically in a lower dimensional space
and then tries to reconstruct the original input (decoding) from this lower representation

a The autoencoder from the paper Neural Relational Inference for Interacting Systems is used for
learning the law of Physics that governs the interaction of n-body systems

a We use the encoder part for an edge-labelling task. We interpret the learnt edge labels as the
entries of the LCA matrix
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Proof of Concept: 303 Overtraining

0.45- — Training
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Epochs

Figure: Demonstration of overtraining for the 303 dataset with a shallow network
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Demonstrating learned particle decay reconstruction with graph neural networks at Belle Il -

Elements of Deep Learning

Data is split into training and validation set
to monitor overtraining.

Input tensors with basic kinematic
information (4 momentum).

random initialization of weights.

activation function (ELU in this work) turns
off some nodes.

Dropout erases some nodes randomly to
fight overtraining.

calculation of loss of the final predictions
(using Cross Entropy in this work).
calculation and multiplication of g—zj with
the learning rate. Update of all the
weights.

IPHC

KIT

Input Layer Hidden Layers Output Layer

Figure: Typical Multilayer Perceptron (MLP)
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Learnable parameters and Hyperparameters

Best tuning for mixed datasets

Set | bsize | Ir dropout [ nhid [ nBlocks [ nMLPs | DoF
6par 16 0.0011 [ 0.000744 | 128 8 14 75776
7par 16 | 0.000072 | 0.308 128 8 4 34816
8par 16 | 0.000185 | 0.133 80 4 14 23680
B — D(— K n~7%)n™ 32 0.001 0.008520 | 512 4 1 45056
BT — D(— Ktr—7°))eTve 32 0.001 0.008520 | 512 4 1 45056
Bt D (—»rm nia)ntat 64 0.00062 0.1883 128 4 12 33792
BT — D(— Ktn~7%)p(— 7w~ 7°) 16 0.00036 0.0624 128 4 12 33792
B" — D(— K'n~ m°)w(— ntr %) 16 | 0.000485 | 0.0304 | 128 4 12 33792
BT D (—»n n na)m aa’ 64 0.00117 | 0.00551 | 256 4 12 67584
all Phasespace 128 0.001 0.25 1024 2 4 69632
all Belle 128 0.001 0.25 1024 2 4 69632

learnable = [(4 - 2) + (5 2) 4 (2 - nMLPs - 2)] - nblocks] - nhid
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