

de physique et ingénierie

Université de Strasbourg

Test de la symétrie CPT

Mesure de la masse de baryons multi-étranges à l'aide de l'expérience ALICE au LHC

Romain SCHOTTER, Université de Strasbourg

19 juin 2020

Romain SCHOTTEI

Plan

I. Motivations

- 1) La symétrie CPT
- 2) Les baryons multi-étranges
- 3) L'expérience ALICE

II. L'analyse de données

- 1) La désintégration en cascade
- 2) La reconstruction topologique
- 3) Les sélections additionnelles
- 4) L'étude systématique

Conclusion

Plan

I. Motivations

- 1) La symétrie CPT
- 2) Les baryons multi-étranges
- 3) L'expérience ALICE

II. L'analyse de données

- 1) La désintégration en cascade
- 2) La reconstruction topologique
- 3) Les sélections additionnelles
- 4) L'étude systématique

Conclusion

Aux prémices du Modèle Standard, toutes les lois de la physique étaient considérées invariantes sous

- La conjuguaison de charge(C),
- La transformation de parité (P),
- Le renversement du temps (T),

• Et leur combinaison CPT.

Les interactions forte et électromagnétique sont invariantes sous ces transformations MAIS l'interaction faible viole la symétrie CP \Rightarrow T est aussi violée !

- Parmi les symétries discrètes, seule CPT est conservée
- \Rightarrow 2 conséquences :
 - Particules et antiparticules partagent les mêmes propriétés fondamentales

 (à l'exception du signe des nombres quantiques)
 - 2) Particules et antiparticules sont créées par paires
- La violation CP étant trop faible pour expliquer l'asymétrie matière-antimatière
 ⇒ recherche de nouvelles sources de violations de symétrie, telle qu'une violation de CPT

- Parmi les symétries discrètes, seule CPT est conservée
- \Rightarrow 2 conséquences :
 - Particules et antiparticules partagent les mêmes propriétés fondamentales

 (à l'exception du signe des nombres quantiques)
 - 2) Particules et antiparticules sont créées par paires
- La violation CP étant trop faible pour expliquer l'asymétrie matière-antimatière
 ⇒ recherche de nouvelles sources de violations de symétrie, telle qu'une violation de CPT

- Parmi les symétries discrètes, seule CPT est conservée
- \Rightarrow 2 conséquences :
 - Particules et antiparticules partagent les mêmes propriétés fondamentales

 (à l'exception du signe des nombres quantiques)
 - 2) Particules et antiparticules sont créées par paires
- La violation CP étant trop faible pour expliquer l'asymétrie matière-antimatière
 ⇒ recherche de nouvelles sources de violations de symétrie, telle qu'une violation de CPT

- Parmi les symétries discrètes, seule CPT est conservée
- \Rightarrow 2 conséquences :
 - Particules et antiparticules partagent les mêmes propriétés fondamentales

 (à l'exception du signe des nombres quantiques)
 - 2) Particules et antiparticules sont créées par paires → En contradiction avec les observations astronomigues
- La violation CP étant trop faible pour expliquer l'asymétrie matière-antimatière
 ⇒ recherche de nouvelles sources de violations de symétrie, telle qu'une violation de CPT

- Parmi les symétries discrètes, seule CPT est conservée
- \Rightarrow 2 conséquences :
 - Particules et antiparticules partagent les mêmes propriétés fondamentales

 (à l'exception du signe des nombres quantiques)
 - 2) Particules et antiparticules sont créées par paires → En contradiction avec les observations astronomigues
- La violation CP étant trop faible pour expliquer l'asymétrie matière-antimatière
 ⇒ recherche de nouvelles sources de violations de symétrie, telle qu'une violation de CPT

I. Motivations Les baryons multi-étranges

Valeurs PDG

Ξ^- MASS (dss) The fit uses the $\Xi^-, \overline{\Xi}^+$, and Ξ	z^0 masses and the z -	$\overline{\underline{z}}^+$ mass difference. It assu	umes that the \varXi^-	INSPIRE search and $\overline{\Xi}^+$ masses are the same.
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
$\bf{1321.71} \pm 0.07$	OUR FIT			
$1321.70 \pm 0.08 \pm 0.05$	$2478 \pm \! 68$	ABDALLAH	2006E DLPH	from Z decays
$\overline{\Xi}^+$ mass $(\overline{d}\overline{s}\overline{s})$)			(INSPIRE search)
The fit uses the Ξ^- , $\overline{\Xi}^+$, and Ξ^-	Ξ^0 masses and the Ξ^-	$-\Xi'$ mass difference. It as	sumes that the 2	\overline{z} and \overline{z} masses are the same.
VALUE (MeV)	EVTS	DOCUMENT ID	TECN	
1321.71 ± 0.07	OUR FIT			
$1321.73 \pm 0.08 \pm 0.05$	$2256 \pm \! 63$	ABDALLAH	2006E DLPH	from Z decays

Alors que l'expérience ALICE fournit 50 fois plus de Ξ en seulement 50 jours d'acquisition (2010)

I. Motivations Les baryons multi-étranges

Valeurs PDG

Ξ^- MASS (dss) The fit uses the $\Xi^-, \overline{\Xi}^+$, and Ξ^0	masses and the	$e = \overline{E}^+$ mass difference. It as	ssumes that	the <i>≘</i> ⁻ a	(INSPIRE search) nd $\overline{\Xi}^+$ masses are the same.
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$\bf 1321.71 \pm 0.07$	OUR FIT				
$1321.70 \pm 0.08 \pm 0.05$	$2478 \pm \! 68$	ABDALLAH	2006E	DLPH	from Z decays
$\overline{\Xi}^{\scriptscriptstyle +}$ mass $(\overline{d}\overline{s}\overline{s})$					(INSPIRE search)
The fit uses the Ξ^- , $\overline{\Xi}^+$, and Ξ^0	masses and th	$e arepsilon^ \overline{arepsilon}^+$ mass difference. It	assumes th	at the Ξ^-	and $\overline{\Xi}^+$ masses are the same.
VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1321.71 ± 0.07	OUR FIT				
$1321.73 \pm 0.08 \pm 0.05$	$2256 \pm \! 63$	ABDALLAH	2006E	DLPH	from Z decays

Alors que l'expérience ALICE fournit **50 fois plus de E en seulement 50 jours d'acquisition** (2010)

I. Motivations Les baryons multi-é<u>tranges</u>

	FVTS			TECN	COMMENT
1672.45 ± 0.29		DOCOMENT		TECN	COMMENT
1672.43 ± 0.32	OUR AVERAGE				
1673 ± 1	100	HARTOUNI	1985	SPEC	80–280 GeV K_L^0 C
1673.0 ± 0.8	41	BAUBILLIER	1978	HBC	8.25 GeV/ $c K^{-} p$
1671.7 ± 0.6	27	HEMINGWAY	1978	HBC	$4.2~{ m GeV}/{\it c}~K^-{\it p}$
1673.4 ± 1.7	4	1 DIBIANCA	1975	DBC	4.9 GeV/ $c \ K^- d$
1673.3 ± 1.0	3	PALMER	1968	HBC	$\mathit{K}^{\!-}p$ 4.6, 5 GeV/c
1671.8 ± 0.8	3	SCHULTZ	1968	HBC	$K^{\!-}p5.5~{ m GeV}/c$
1674.2 ± 1.6	5	SCOTTER	1968	HBC	$K^{\!-}p$ 6 GeV $/c$
1672.1 ± 1.0	$\left(\frac{1}{\overline{\overline{\mathbf{n}}}\overline{\mathbf{n}}\overline{\mathbf{n}}}\right)$	2 FRY	1955	EMUL	INSPIRE sea
The fit assumes th	e Ω^- and $\overline{\Omega}^+$ masses and	e the same, and avera	ages them t	ogether.	
	EVITS	DOCUMEN		TECN	COMMENT
VALUE (MeV)	EVTS	DOCUMEN	TID	TECN	COMMENT

I. Motivations Les baryons multi-étranges

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT				
$\textbf{1672.43} \pm \textbf{0.32}$	OUR AVERAGE		_		
1673 ± 1	100	HARTOUNI	1985	SPEC	$80-280 \text{ GeV } K_L^0 \text{ C}$
1673.0 ± 0.8	41	BAUBILLIER	1978	HBC	$8.25~{ m GeV}/{\it c}~K^{\!-}p$
1671.7 ± 0.6	27	HEMINGWAY	1978	HBC	$4.2~{ m GeV}/{\it c}~{\it K}^{\!-}{\it p}$
1673.4 ± 1.7	4	1 DIBIANCA	1975	DBC	4.9 GeV/ $c \ K^- d$
1673.3 ± 1.0	3	PALMER	1968	HBC	$K^{\!-}p$ 4.6, 5 ${ m GeV}/c$
1671.8 ± 0.8	3	SCHULTZ	1968	HBC	$K^{\!-}p5.5~{ m GeV}/c$
1674.2 ± 1.6	5	SCOTTER	1968	HBC	$K^{\!-}p$ 6 ${ m GeV}/c$
1672.1 ± 1.0	1	2 FRY	1955	EMUL	
$\overline{\Omega}$ MASS (The fit assumes the	$\left(\overline{\boldsymbol{S}}\overline{\boldsymbol{S}}\overline{\boldsymbol{S}}\overline{\boldsymbol{S}} ight)$ e $arOmega^-$ and $\overline{arOmega}^+$ masses ar	e the same, and averag	ges them t	ogether.	
VALUE (MeV)	EVTS	DOCUMENT	D	TECN	COMMENT
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT				
1672 = 0.7	OUR AVERAG	E			
1072.3 ± 0.7					

I. Motivations Les baryons multi-étranges

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT	🔿 Faible préc	ision s	tatistique	
$\textbf{1672.43} \pm \textbf{0.32}$	OUR AVERAGE			7	
1673 ± 1	100	HARTOUNI	1985	SPEC	$80-280 \text{ GeV } K_L^0 \text{ C}$
1673.0 ± 0.8	41	BAUBILLIER	1978	HBC	8.25 GeV/ $c~K^-p$
1671.7 ± 0.6	27	HEMINGWAY	1978	HBC	4.2 GeV/ $c~K^-p$
1673.4 ± 1.7	4	1 DIBIANCA	1975	DBC	4.9 GeV/ $c~K^-d$
1673.3 ± 1.0	3	PALMER	1968	HBC	$\mathit{K}^{\!-}\mathit{p}$ 4.6, 5 GeV/c
1671.8 ± 0.8	3	SCHULTZ	1968	HBC	$\mathit{K}^{\!-}p5.5~{ m GeV}/\mathit{c}$
1674.2 ± 1.6	5	SCOTTER	1968	HBC	$K^{\!-} p$ б $ { m GeV}/c$
1672.1 ± 1.0	1	2 FRY	1955	EMUL	
$\overline{\Omega}^+$ MASS (The fit assumes the	$\left(\overline{S}\overline{S}\overline{S}\overline{S}\right)$ e g^- and \overline{g}^+ masses a	are the same, and avera	ges them t	together.	(INSPIRE se
VALUE (MeV)	EVTS	DOCUMEN	TID	TECN	COMMENT
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT				
$\textbf{1672.5} \pm \textbf{0.7}$	OUR AVERA	GE			
	70	HADTOUNI	10	SPEC	80-280 GeV/ K ⁰ C
1672 ± 1	12	HARTOUNI			00-200 OCV

I. Motivations L'expérience ALICE

I. Motivations L'expérience ALICE

Inner Tracking System (ITS), 6 couches de détecteurs silicium → Reconstruire les vertex primaires et secondaires **Time Projection Chamber (TPC)**, détecteur gazeux (90 m^3) Reconstruire les traces et les identifier **Trajectographie + identification** des hadrons chargés **Objectif du stage** : Nouvelles mesures des Ξ et des Ω Tester l'invariance de la symétrie CPT

Romain SCHOTTER

19/06/2020

Plan

I. Motivations

- 1) La symétrie CPT
- 2) Les baryons multi-étranges
- 3) L'expérience ALICE

II. L'analyse de données

- 1) La désintégration en cascade
- 2) La reconstruction topologique
- 3) Les sélections additionnelles
- 4) L'étude systématique

Conclusion

II. L'analyse des données La désintégration en cascade

- Objectif : Mesurer la masse des Ξ et des Ω au sein de collisions pp à \sqrt{s} = 13 TeV du run II du LHC
- Désintégration en cascade

II. L'analyse des données La désintégration en cascade

- Objectif : Mesurer la masse des Ξ et des Ω au sein de collisions pp à \sqrt{s} = 13 TeV du run II du LHC
- Désintégration en cascade

• Ce qui m'a été fourni

Tous les candidats cascades de 2016 à 2018 parmi les collisions pp à \sqrt{s} = 13 TeV (140 × 10⁶ cascades)

Minimum bias High multiplicity

4.9 milliards d'événements

II. L'analyse des données La désintégration en cascade

- **Objectif** : Mesurer la masse des Ξ et des Ω au sein de collisions pp à \sqrt{s} = 13 TeV du run II du LHC
- Désintégration en cascade •

Ce qui m'a été fourni

Tous les candidats cascades de 2016 à 2018 parmi les collisions pp à \sqrt{s} = 13 TeV (140 × 10⁶ cascades)

Minimum bias

4.9 milliards d'événements

High multiplicity

Ce que j'ai réalisé

Un code ROOT/C++ (~5000 lignes) pour extraire les masses des Ξ/Ω à partir des cascades reconstruites

• **Donc** : Les Ξ et Ω sont reconstruits à partir des particules filles de leur cascade

(Association de **3 traces**)

7/18

- Problèmes :
- Jusqu'à 50 traces par événement pp
- Beaucoup d'associations de 3 traces mènent à de fausses cascades
- = bruit de fond combinatoire
- Comment distinguer les vraies cascades du bruit de fond combinatoire ?

Appliquer des sélections topologiques (12)

1) Formation d'un V0

- 2 traces secondaires : 1 positive et 1 négative...
- ...venant du même vertex
- 2) Construction d'un candidat Λ ou $\overline{\Lambda}$
 - V0 secondaires...
 - ...compatible avec la masse d'un Λ ou d'un $\overline{\Lambda}$
- 3) Association d'un candidat $\Lambda/\overline{\Lambda}$ à une particule célibataire
 - 1 trace secondaire chargée...
 - ...venant du même vertex que le Λ/Λ
- 4) Sélection des cascades dans une zone de confiance
 - Proche du faisceau, le bruit de fond domine
 - Peu de chance de trouver une cascade loin

1) Formation d'un V0

- 2 traces secondaires : 1 positive et 1 négative...
- ...venant du même vertex
- 2) Construction d'un candidat Λ ou $\overline{\Lambda}$
 - V0 secondaires...
 - ...compatible avec la masse d'un Λ ou d'un $\overline{\Lambda}$
- 3) Association d'un candidat $\Lambda/\overline{\Lambda}$ à une particule célibataire
 - 1 trace secondaire chargée...
 - ...venant du même vertex que le Λ/Λ
- 4) Sélection des cascades dans une zone de confiance
 - Proche du faisceau, le bruit de fond domine
 - Peu de chance de trouver une cascade loin

1) Formation d'un VO

- 2 traces secondaires : 1 positive et 1 négative...
- …venant du même vertex
- 2) Construction d'un candidat Λ ou Λ
 - V0 secondaires...
 - ...compatible avec la masse d'un Λ ou d'un $\overline{\Lambda}$

3) Association d'un candidat $\Lambda/\overline{\Lambda}$ à une particule célibataire

- 1 trace secondaire chargée...
- ...venant du même vertex que le $\Lambda/\overline{\Lambda}$
- 4) Sélection des cascades dans une zone de confiance
 - Proche du faisceau, le bruit de fond domine
 - Peu de chance de trouver une cascade loin

1) Formation d'un V0

- 2 traces secondaires : 1 positive et 1 négative...
- ...venant du même vertex
- 2) Construction d'un candidat Λ ou $\overline{\Lambda}$
 - V0 secondaires...
 - ...compatible avec la masse d'un Λ ou d'un $\overline{\Lambda}$
- 3) Association d'un candidat $\Lambda/\overline{\Lambda}$ à une particule célibataire
 - 1 trace secondaire chargée...
 - ...venant du même vertex que le $\Lambda/\overline{\Lambda}$
- 4) Sélection des cascades dans une zone de confiance
 - Proche du faisceau, le bruit de fond domine
 - Peu de chance de trouver une cascade loin

• **Un pic de sur-population** proche de la masse du Ξ

Distribution de masse invariante des Ξ^-

Extraction de la masse

- On ajuste ce pic avec une
 - Gaussienne
 - Double gaussienne
 - Gaussienne asymétrique
- On ajuste le bruit de fond avec un
 - polynôme d'ordre 1
 - polynôme d'ordre 2
 - polynôme d'ordre 3
 - polynôme d'ordre 4

 Un pic de sur-population proche de la masse du Ξ

Distribution de masse invariante des Ξ^-

Extraction de la masse

- On ajuste ce pic avec une
 - Gaussienne
 - Double gaussienne
 - Gaussienne asymétrique
- On ajuste le bruit de fond avec un
 - polynôme d'ordre 1
 - polynôme d'ordre 2
 - polynôme d'ordre 3
 - polynôme d'ordre 4

Bruit de fond combinatoire est encore très élevé → pureté modérée Recours à des sélections additionnelles

275 jeux de nouvelles sélections ont été testés pour arriver à 9 sélections additionnelles optimisées

19/06/2020

Romain SCHOTTER

• Un pic de sur-population proche de la masse du Ξ

Distribution de masse invariante des Ω^-

Extraction de la masse

- On ajuste ce pic avec une
 - Gaussienne
 - Double gaussienne
 - Gaussienne asymétrique
- On ajuste le bruit de fond avec un
 - polynôme d'ordre 1
 - polynôme d'ordre 2
 - polynôme d'ordre 3
 - polynôme d'ordre 4

Bruit de fond combinatoire est encore très élevé → pureté modérée Recours à des sélections additionnelles

275 jeux de nouvelles sélections ont été testés pour arriver à 9 sélections additionnelles optimisées

19/06/2020

Romain SCHOTTER

II. L'analyse des données Les sélections additionnelles 1/5

1) Réjection des topologies erronées

En réalité

L'interprétation de l'algorithme de reconstruction

Romain SCHOTTER

II. L'analyse des données Les sélections additionnelles 1/5

19/06/2020

Romain SCHOTTER

II. L'analyse des données Les sélections additionnelles 2/5

2) Réjection de la cascade concurrente dans le cas des Ω Zone de réjection Perte de ~3% du signal et ~ 25 % du bruit de fond

Réjection du *pile-up*

- 3) In bunch : plusieurs collisions au sein d'un même croisement de paquets
- 4) *Out-of-bunch* : plusieurs collisions provenant de plusieurs croisements de paquets

5)Pas d'événements avec ≥ 1 collision(s) à proximité de l'événements étudié [-500; +500] paquets19/06/2020Romain SCHOTTER

II. L'analyse des données Les sélections additionnelles 2/5

2) Réjection de la cascade concurrente dans le cas des Ω

Perte de ~3% du signal et ~ 25 % du bruit de fond

Réjection du pile-up

- 3) In bunch : plusieurs collisions au sein d'un même croisement de paquets
- 4) **Out-of-bunch** : plusieurs collisions provenant de plusieurs croisements de paquets
- 5) Pas d'événements avec ≥ 1 collision(s) à proximité de l'événement étudié [-500; +500] paquets

19/06/2020

II. L'analyse des données Les sélections additionnelles 3/5

Requêtes sur les informations TPC

6) Nature des particules filles de la cascade :

compatibilité < 1 $\sigma \rightarrow$ augmentation de la pureté

Perte de $\,\,\sim 69\%$ du signal et $\,\sim 84~\%$ du bruit de fond

7) Echantillonage des traces de chaque fille

13/18

Echantillonnage et longueur des traces \nearrow , Résolution en impulsion \nearrow (σ_{p_T}/p_T >)

Requêtes sur les informations ITS

- B) Coup dans le SPD 0 pour la particule célibataire
- O) Coup dans le SSD pour chaque particule fille du VO

Perte de ~ 77% du signal et ~ 94 % du bruit de fond

19/06/2020

II. L'analyse des données Les sélections additionnelles 3/5

Requêtes sur les informations TPC

6) Nature des particules filles de la cascade :

compatibilité < 1 $\sigma \rightarrow$ augmentation de la pureté

Perte de $\,\,\sim 69\%$ du signal et $\sim 84~\%$ du bruit de fond

7) Echantillonage des traces de chaque fille

Echantillonnage et longueur des traces \nearrow , Résolution en impulsion \nearrow (σ_{p_T}/p_T >) 13/18

Requêtes sur les informations ITS

- B) Coup dans le SPD 0 pour la particule célibataire
- O) Coup dans le SSD pour chaque particule fille du VO

Perte de ~ 77% du signal et ~ 94 % du bruit de fond

19/06/2020

II. L'analyse des données Les sélections additionnelles 3/5

Requêtes sur les informations TPC

6) Nature des particules filles de la cascade :

compatibilité < 1 $\sigma \rightarrow$ augmentation de la pureté

Coup dans le SPD 0 pour la particule célibataire

Coup dans le SSD pour chaque particule fille du VO

Perte de ~ 77% du signal et ~ 94 % du bruit de fond

Perte de $\ \simeq 69\%$ du signal et $\sim 84\%$ du bruit de fond

7) Echantillonage des traces de chaque fille

Echantillonnage et longueur des traces \nearrow , **Résolution en impulsion** \nearrow ($\sigma_{p_T}/p_T \searrow$) $\sigma_{p_T}/p_T = \frac{\sigma_{(r,\varphi)} p_T}{0.3 B L_{track}^2} \sqrt{\frac{720}{N_{hits} + 4}}$ outer TPC wall outer chamber pad rows wire direction 62inner chamber minimum 90 rangées traversées sur 159 inner TPC wall track Perte de ~6% du signal et ~ 22 % du bruit de fond ALICE TPC sectors and pad rows, A. Maire 38 cm 7.6 cm 23.9 cm Célibataire 43 cm 15 cm 3.9 cm SDD SSD SPD Filles du VO Vtx Prim

13/18

19/06/2020

8)

9)

II. L'analyse des données Les sélections additionnelles 4/5

Incertitude statistique et systématique

Ξ

14/18

On ajuste le bruit de fond avec un **polynôme d'ordre 1**

19/06/2020

Ξ

II. L'analyse des données Les sélections additionnelles 4/5

 $M_{PDG}(\Xi) = 1321.71 \pm 0.07 MeV/c^2$

Incertitude statistique et systématique

Amélioration d'un facteur > 4

On ajuste le bruit de fond avec un polynôme d'ordre 1

19/06/2020

Ξ

II. L'analyse des données Les sélections additionnelles 5/5

On ajuste le bruit de fond avec un polynôme d'ordre 1

19/06/2020

Romain SCHOTTER

On ajuste le bruit de fond avec un polynôme d'ordre 1

19/06/2020

II. L'analyse des données Etude systématique

1/2

Objectif : Déterminer et étudier les biais de notre méthode d'analyse

Sources de biais :

- 1) Coupures topologiques
- 2) Coupures additionnelles (TPC)
- 3) ...

Démarche :

- 20 000 variations de coupures
- = 20 000 distributions de masse invariante
- = 20 000 extractions de masse

+ 4 critères pour rejeter les valeurs aberrantes Ex : - valeurs issues d'un ajustement qui échoue $-\chi^2/NDF \ge 5$

➔ On observe comment se distribuent la masse extraite et son erreur

Particule	Masse (MeV/ c^2)	Incertitude Stat. (MeV/c ²)	Incertitude Syst. (MeV/ <i>c</i> ²)	Masse PDG (MeV/c ²)	Incertitude (stat. \oplus syst.) PDG (MeV/ c^2)
<u>-</u> +	1321.678	0.020	0.020	1321.71	0.07
Ξ	1321.639	0.019	0.018	1321.71	0.07
$\overline{\Omega}^+$	1672.551	0.029	0.027	1672.45	0.29
Ω^{-}	1672.558	0.029	0.033	1672.45	0.29

Résultats :

19/06/2020

Romain SCHOTTER

II. L'analyse des données Etude systématique

1/2

16/19

Objectif : Déterminer et étudier les biais de notre méthode d'analyse

Sources de biais :

- 1) Coupures topologiques
- 2) Coupures additionnelles (TPC)
- 3) ...

Démarche :

- 20 000 variations de coupures
- = 20 000 distributions de masse invariante
- = 20 000 extractions de masse

+ 4 critères pour rejeter les valeurs aberrantes Ex : - valeurs issues d'un ajustement qui échoue $-\chi^2/NDF \ge 5$

Résultats :

On observe comment se distribuent la masse extraite et son erreur

Particule	Masse (MeV/ c^2)	Incertitude Stat. \oplus Incertitude Syst. (MeV/ c^2) (MeV/ c^2)	Masse PDG (MeV/c ²)	Incertitude (stat. \oplus syst.) PDG (MeV/ c^2)
<u>-</u> +	1321.678	0.029	1321.71	0.07
Ξ	1321.639	0.027	1321.71	0.07
$\overline{\Omega}^+$	1672.551	0.040	1672.45	0.29
Ω^{-}	1672.558	0.044	1672.45	0.29

II. L'analyse des données Etude systématique

2/2

Particule	Masse (MeV/ c^2)	Incertitude Stat. (MeV/c ²)	Incertitude Syst. (MeV/c ²)	Masse PDG (MeV/c ²)	Incertitude (stat. \oplus syst.) PDG (MeV/ c^2)
<u>-</u> +	1321.678	0.020	0.020	1321.71	0.07
[]	1321.639	0.019	0.018	1321.71	0.07
$\overline{\Omega}^+$	1672.551	0.029	0.027	1672.45	0.29
Ω^{-}	1672.558	0.029	0.033	1672.45	0.29

Test de la symétrie CPT : calcul de la différence de masse

$$\frac{M_{\pm^+} - M_{\Xi^-}}{M_{\Xi^-}} = [2.96 \pm 2.92] \times 10^{-5}$$
PDG: $(-2.5 \pm 8.7) \times 10^{-5}$

$$\frac{M_{\pm^+} - M_{\Omega^-}}{M_{\Phi^-}} = [-0.42 \pm 3.55] \times 10^{-5}$$
PDG: $(-1.44 \pm 7.98) \times 10^{-5}$

- Améliore les valeurs PDG de différence de masse d'un facteur > 2 1)
- Ce test particulier n'a pas permis d'invalider la **symétrie CPT** ($\Delta m \sim 0$) 2) MAIS a permis d'offrir une contrainte supplémentaire

19/06/2020

 M_{Ω} -

Conclusion

• Résultats :

Nos mesures

- 1) améliorent les valeurs de masse et de différence de masse actuelles d'un facteur > 2
- 2) contraignent davantage la validité de la symétrie CPT

→ Présentation à un groupe de travail de la collaboration + amorce d'une note d'analyse

• Perspectives :

1) Poursuite de cette étude cet été...

- Examiner d'autres sources d'incertitudes systématiques (Binning sur la masse invariante *(en cours)*, plage d'ajustement,...)

- Pousser les systématiques jusqu'au calcul de ΔM
- Comparer M(reco) Vs M(Monte-Carlo)
- 2) ...en vue de sa finalisation et de sa publication

Merci pour votre attention

19/06/2020

Romain SCHOTTER

Back up

19/06/2020

Romain SCHOTTER

Contexte

Cas du proton :

$$ig| m_p \, - m_{\overline{p}} ig| / m_p$$
 < 7 $imes$ 10⁻¹⁰
Cas du e^- : $|m_{e^-} \, - m_{e^+}| / m_{e^-}$ < 8 $imes$ 10⁻⁹

Cas du deutérium :

 $|m_d - m_{\overline{d}}|/m_d < 0.9 \times 10^{-4}$ Cas du ³He: $|m_{He} - m_{\overline{H}e}|/m_{He} < -1.2 \times 10^{-3}$

Cas du Λ :

$$|m_{\Lambda} - m_{\overline{\Lambda}}|/m_{\Lambda}$$
 < -1.2 $imes$ 10⁻³

Lot de données

- Dans cette analyse, proton-proton collision à \sqrt{s} = 13 TeV du run II
- Compilation de toutes les collisions pp de 2016 à 2018 sous deux déclenchements :

VS

- *Minimum bias* (certitude d'une collision pp, et pas une collision résiduelle)
- High Multiplicity (forte production de particules)

pp inélastique

➔ 4,9 milliards d'événements !

Désintégration hadronique du Z

3,25 millions d'événements des mesures relatives aux Ξ du PDG

48

La sélection des Ξ et des Ω

On reconstruit les cascades grâce à des critères spatiaux

Reconstruction topologique
MAIS

Notre but est une **mesure de précision** de la masse des Ξ et des Ω

Variables Topologiques	Sélections $\Xi^{-}(\overline{\Xi}^{+})$
DCA Pos au vtx prim	> 0.03(0.04) cm
DCA Neg au vtx prim	> 0.04(0.03) cm
DCA V0 au vtx prim	> 0.06 cm
DCA entre les filles du V0	< 1.5 cm
Rayon du V0	> 1.2 cm
V0 Cos(Angle de pointage)	> 0.97
Masse V0 – Masse Λ	< 0.008 GeV
DCA célibataire au vtx prim	> 0.04 cm
DCA entre les filles de la casc.	< 1.3 cm
Rayon de la casc.	> 0.6 cm
Casc. Cos(Angle de pointage)	> 0.97
Distance de vol casc.	< 3*4.91 cm

→ Recours à des sélections additionnelles

275 jeux de sélections ont été testés

Variables TPC	Sélection
Nbr de rangées traversées	> 90
PID TPC	< 1 <i>o</i>
Requêtes ITS	Sélection
Célibataire	SPD 0
Filles du VO	SSD 4 or SSD 5
Variables Pile-up	Sélection
Réjection MV pile-up	OUI
Réjection OOB pile-up	OUI
Collision de paquets le plus proche] $-\infty$; -500] U [500 ; $+\infty$ [

Romain SCHOTTER

La sélection des Ξ et des Ω

On reconstruit les cascades grâce à des critères spatiaux

Reconstruction topologique
MAIS

Notre but est une **mesure de précision** de la masse des Ξ et des Ω

Variables Topologiques	Sélections Ω^- ($\overline{\Omega}^+$)
DCA Pos au vtx prim	> 0.03(0.04) cm
DCA Neg au vtx prim	> 0.04(0.03) cm
DCA V0 au vtx prim	> 0.06 cm
DCA entre les filles du V0	< 1.5 cm
Rayon du V0	> 1.1 cm
V0 Cos(Angle de pointage)	> 0.97
Masse V0 – Masse Λ	< 0.008 GeV
DCA célibataire au vtx prim	> 0.04 cm
DCA entre les filles de la casc.	< 1.3 cm
Rayon de la casc.	> 0.5 cm
Casc. Cos(Angle de pointage)	> 0.97
Distance de vol casc.	< 3*2.46 cm
Masse Ω^\pm – Masse Ξ^\pm	< 0.008 GeV
19/06/2020	

→ Recours à des sélections additionnelles

275 jeux de sélections ont été testés

Variables TPC	Sélection
Nbr de rangées traversées	> 90
PID TPC	< 2 <i>o</i>
Requêtes ITS	Sélection
Célibataire	SPD 0
Filles du VO	SSD 4 or SSD 5
Variables Pile-up	Sélection
Réjection MV pile-up	OUI
Rejection OOB pile-up	OUL
Collision de paquets le pl us proche] ∞; –500] ∪ [500 ; +∞ [

Romain SCHOTTER

L'extraction de la masse

L'extraction de la masse

52

L'étude systématique 1/5

Incertitude statistique << Incertitude sur la masse du PDG

MAIS notre jeu de coupure peut être fortement biaisé

Si c'est le cas, la moindre variation dans nos coupures → valeur de masse complètement différente

- Construire la distribution du signal suivant chaque variable topologique (14 variables)
- Choisir un jeu de sélection aléatoire (selon leur distribution respective) (1 jeu de selection = 14 variables)
- Construit la masse invariante et on extrait la masse

L'étude systématique 2/5

Incertitude statistique << Incertitude sur la masse du PDG

MAIS notre jeu de coupure peut être fortement biaisé

Si c'est le cas, la moindre variation dans nos coupures → valeur de masse complètement différente

- Construire la distribution du signal suivant chaque variable topologique (14 variables)
- Choisir un jeu de sélection aléatoire (selon leur distribution respective) (1 jeu de selection = 14 variables)
- Construit la masse invariante et on extrait la masse

L'étude systématique 3/5

Incertitude statistique << Incertitude sur la masse du PDG

MAIS notre jeu de coupure peut être fortement biaisé

Si c'est le cas, la moindre variation dans nos coupures → valeur de masse complètement différente

- Construire la distribution du signal suivant chaque variable topologique (14 variables)
- Choisir un jeu de sélection aléatoire (selon leur distribution respective) (1 jeu de selection = 14 variables)
- Construit la masse invariante et on extrait la masse

L'étude systématique 4/5

Incertitude statistique << Incertitude sur la masse du PDG

MAIS notre jeu de coupure peut être fortement biaisé

Si c'est le cas, la moindre variation dans nos coupures → valeur de masse complètement différente

- Construire la distribution du signal suivant chaque variable topologique (14 variables)
- Choisir un jeu de sélection aléatoire (selon leur distribution respective) (1 jeu de selection = 14 variables)

Construit la masse invariante et on extrait la masse

L'étude systématique 5/5

Incertitude statistique << Incertitude sur la masse du PDG

MAIS notre jeu de coupure peut être fortement biaisé

Si c'est le cas, la moindre variation dans nos coupures → valeur de masse complètement différente

- Construire la distribution du signal suivant chaque variable topologique (14 variables)
- Choisir un jeu de sélection aléatoire (selon leur distribution respective) (1 jeu de selection = 14 variables)

Construit la masse invariante et on extrait la masse

L'étude systématique

Parmi 20 000 jeux de sélections, tous les fits ne sont pas utiles (Ex : échec du fit, valeur aberrante,...) = 20 000 Masses Inv. x 4 espèces = 20 000 ajustements du signal x 4 espèces Un ajustement est considéré comme utile si

- Il est successful,
- Valeur-p est petite (<0.05),
- $\chi^2/NDF < 5$,
- $\sigma_{\mu_i} < 0.1\% \, \mu_i$ (~ 1 MeV), avec μ_i la valeur de la masse pour le jeu de sélections i

 σ_{μ_i} erreur sur la valeur μ_i

• Signal > 0 & Bruit de fond >= 0

L'étude systématique

Parmi 20 000 jeux de sélections, tous les fits ne sont pas utiles (Ex : échec du fit, valeur aberrante,...) = 20 000 Masse Inv. x 4 espèces = 20 000 ajustement du signal x 4 espèces Un ajustement est considéré comme utile si

- Il est successful,
- $\chi^2/NDF < 5$,
- $\sigma_{\mu_i} < 0.1\% \, \mu_i$ (~ 1 MeV), avec μ_i la valeur de la masse pour le jeu de sélections i

 σ_{μ_i} erreur sur la valeur μ_i

• Signal > 0 & Bruit de fond >= 0

Topologie erronée

60