

Testing the Neutrino mass ordering with JUNO detector via Atmospheric and reactor neutrino

Mariam Rifai Under the supervision of João Pedro Athayde Marcondes De André and co-supervision of Leonidas N. Kalousis 18/06/2020

1

Neutrino Oscillation

- Discovery of Neutrino oscillation (atmospheric and solar neutrinos experiments) leads to a non-zero neutrino mass
- The flavors eigenstates describes as mixtures of mass eigenstates

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 1 \\ c23 \\ s23 \\ -s23 \\ c23 \end{pmatrix} \begin{pmatrix} c13 \\ s13e^{-i\delta} \\ -s13e^{-i\delta} \\ c13 \end{pmatrix} \begin{pmatrix} c12 \\ s12 \\ -s12 \\ c12 \\ 1 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$P_{\alpha \to \beta} = \delta_{\alpha\beta}$$

$$-4 \sum_{i>j} \mathcal{R} \left(U_{\alpha i}^{*} U_{\beta j} U_{\alpha j} U_{\beta i}^{*} \right) \sin^{2} \left(1.27 \frac{\Delta m_{ij}^{2} L}{E} \right)$$

$$+2 \sum_{i>j} \mathcal{I} \left(U_{\alpha i}^{*} U_{\beta j} U_{\alpha j} U_{\beta i}^{*} \right) \sin \left(2.54 \frac{\Delta m_{ij}^{2} L}{E} \right).$$

• Neutrino oscillation physics is only sensitive to the squared mass differences

Neutrino Mass Ordering (NMO)

□ The absolute value of these mass differences has already been measured.
 □ The sign of Δm²₂₁ is fixed by Solar experiment.

 $\hfill The sign of \ \Delta m^2_{32}$ is indeed not determined so far .

NMO describes the ordering of these masses Only two possibilities remain: "Normal" or "Inverted"

Many experiments aiming to measure NMO (JUNO ...)

JUNO Experiment

JUNO is a "medium-baseline" (53km) reactor neutrino experiment located in China, under construction .

JUNO will be the largest Liquid Scintillator detector ever built (20kt) with energy resolution 3%.

Expected to measure the NMO with more than 3σ

Visible energy spectrum in the detector with 3% Energy Resolution.

 $\Delta\chi$ 2=15 with No Systematics

JUNO Detector

- The central detector is a liquid scintillator (LS) detector of 20 kT fiducial mass.
- JUNO has a Diameter of a 35.4 m
- The central detector is submerged in a water pool to be shielded from natural radioactivity from the surrounding rock and air.
- The water pool can be used to detect muons passing through the target volume .

Atmospheric Neutrinos...

- Interaction of the cosmic rays with the earth's atmosphere
- ve/μ generated in atmosphere by meson decays
- At low energy, most common reaction chain is :

$$p^{+} + N \rightarrow \pi^{\pm} + X$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

$$\pi^{-} \rightarrow \mu^{-} + \bar{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}.$$

- the expected flux ratios is $\frac{\phi_{\nu\mu} + \phi_{\overline{\nu}\mu}}{\phi_{\nu e} + \phi_{\overline{\nu}e}} \ge 2$
- tau neutrinos are not generated in these decays

Initial Atmospheric Flux

Phys. Rev. D92, 023004 (2015) M. Honda and al.

- At low energy the ratios is equal.
- These ratios increase at higher energies as muons are less likely to decay before hitting ground

 $\Phi_v * E^2$ (GeV m⁻²s⁻¹sr⁻¹)

• Atmospheric Neutrino in dependency of the Zenith angle and the energy .

Neutrino Oscillation...Matter Effects

• Interactions with electrons in the Earth (MSW-effects)

Resonance occurring from periodicity of matter profile

Neutrino Oscillation Inside the Earth

Electron Density Model : Preliminary Reference Earth Model (PREM)

10.17611/DP/9991844 *A. M. Dziewonski & D. L. Anderson*

Using the **Best fit Parameter** From Global Fit :

	Normal Ordering (best fit)		
	bfp $\pm 1\sigma$	3σ range	
$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	
$\sin^2 \theta_{23}$	$0.582^{+0.015}_{-0.019}$	$0.428 \rightarrow 0.624$	
$\theta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	
$\sin^2 \theta_{13}$	$0.02240^{+0.00065}_{-0.00066}$	$0.02044 \rightarrow 0.02437$	
$\theta_{13}/^{\circ}$	$8.61^{+0.12}_{-0.13}$	$8.22 \rightarrow 8.98$	
$\delta_{\rm CP}/^\circ$	217^{+40}_{-28}	$135 \to 366$	
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.39\substack{+0.21\\-0.20}$	$6.79 \rightarrow 8.01$	
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	

arXiv:1811.05487v1

Neutrino Oscillation (NH and IH)

3 Flavor $P_{v_{\mu} \rightarrow v_{\mu}}$ 3 Flavor $\mathsf{P}_{_{\overline{v}_u} \to \overline{v}_\mu}$ Cos(0) Cos(0) 0.9 0.9 0.8 0.8 0.5 0.5 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 10³ 10² 10 10² 10³ 10 Energy [GeV] Energy [GeV] **Normal Hierarchy** 3 Flavor $P_{v_{\mu} \rightarrow v_{\mu}}$ 3 Flavor $\mathsf{P}_{_{\overline{v}_{\mu}} \rightarrow \overline{v}_{\mu}}$ Cos(0) Cos(0) 0.9 0.9 0.8 0.8 0.5 0.5 -0.7 0.7 0.6 0.6 0.5 0.5 $\cos(\theta) \leq -0.82$ 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 10³ 10 10² 10 10² 10³ Energy [GeV] Energy [GeV]

http://www.phy.duke.edu/~raw22/public/ Prob 3++

Vacuum Oscillation: identical to v and \bar{v} .

$$P_{IH}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{NH}(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$$

 \rightarrow Matter effects: arise in ν for NO and $\overline{\nu}$ for IO $P_{NH}(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{IH}(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta})$

The Matter effects for neutrinos traveling through the dense Earth core appears for energy between 5 to 10 GeV and for

Neutrino Detection

 Reproduce the total shape of cross section for Neutrino and Anti Neutrino

Global Study of the interaction through the detector

J. A. Formaggio and G. P. Zeller arXiv:1305.7513v1

Realistic Atmospheric Neutrino Flux

The expected number of events are calculated by using :

$$T_{ij,\nu\alpha} = 2\pi MT \int_{\cos\theta_2^{i,\min}}^{\cos\theta_2^{i,\max}} d\cos\theta_Z \int_{E_{\nu}^{j,\min}}^{E_{\nu}^{j,\max}} dE_{\nu}F_{\alpha}(\cos\theta_Z, E_{\nu})\sigma_{\nu\alpha}$$

Where $\cos \theta_z^{i,max/min}$ and $E_v^{i,max/min}$ are the borders of the bin i, j in zenith angle and energy (Honda Binning).

	$ u_{\mu} $ - events	$ar{ u}_{\mu}$ - events	$ u_e $ - events	$ar{ u}_e$ events
Rate Estimated by JUNO	8662	3136	6637	2221
Rate Calculated by me	8900	3242	7005	2105

Detector Performance

Selection Events and Classification

Two conditions to select events :

- Resolution for the charged Lepton direction
- Resolution for the charged flavor recognition

Selection :

Tracks with length $L\mu \ge 5$ m

Classification :

Fully Contained (FC)

Energy Resolution σ Evis = 0.01 $\sqrt{Evis/GeV}$ Angular Resolution better than 1°

 CC muon neutrinos

- CC Electron neutrinos
- NC interactions

 The Selection efficiency of Lµ ≥ 5 m for 200 kton-years exposure:

About 1K FC for a sample about of 12 k $\nu_{\mu}/\,\overline{\nu_{\mu}}$ CC events .

Parametrization of the Events Reconstruction F. An et al. [JUNO Collaboration], J. Phys. G43(2016)3.

Estimated the Oscillated Atmospheric Neutrino

Under investigation

• There is a slight difference between them but not were we expect to have it

Next Step *Statistical Approach* Estimate the sensitivity to Δm_{32}^2 using χ^2 –method

Example of my last step Combination ORCA /JUNO

My work replace ORCA by JUNO Atmospheric

16

Conclusion and Perspectives

Estimated Oscillated Neutrino Flux :

- ✓ Simulating the atmospheric neutrino flux following the HKKM2014 model.
- $\checkmark\,$ Digitize the cross section following Zeller and al.
- ✓ Simulating oscillation probabilities with Prob3++ and include them in the flux model.

□Study the Detector Performance :

- \checkmark Parametrize the events reconstructed in JUNO Yellow Book
- investigate the Oscillated Atmospheric Neutrino

□Next Step

- Study the sensitivity
- Using the Combination ORCA/JUNO's Strategy for a JUNO only Combination of reactor and Atmospheric

Neutrino Detection

