

Study of isolation Working Points for the High Mass Drell-Yan cross-section measurement with the ATLAS experiment

Makridou Magdalini(U. Strasbourg) Supervisor: Tetiana Berger-Hryn'ova (LAPP)

Introduction

- The Standard Model (SM) represents our current understanding of elementary particles and their interactions.
- Indications that SM is not the complete theory of particle physics.
- SM processes well predicted which can be measured precisely, have to be studied.
- One of the most prominent processes of this kind is the Drell-Yan (DY) process.
- It was first suggested by Sidney D. Drell and Tung-Mow Yan in 1970 in order to describe the production of dilepton pairs in high energy hadron collisions.
- It takes place when a quark of one hadron and an antiquark of another hadron annihilate, creating a virtual photon or Z boson which then decays into a pair of oppositely-charged leptons.

- Provides a way to test and verify the SM predictions at a high level of precision.
- Additionally the dilepton mass spectrum may be modified by new physics phenomena.

- The Large Hadron Collider (LHC), a proton-proton (pp) accelerator at CERN : a powerful machine which allows to search for new physics phenomena and to test the predictions of the Standard Model at the highest yet reached energy scales.
- To obtain a high level of accuracy of a hard-scattering process at the LHC a very good understanding of the structure of the proton is important.

Proton:

- Hadron (composite particle)
- Consists of so-called partons (valence and sea quarks, gluons)

- The partons carry a momentum fraction of the proton (Bjorken x).
- The probability to find a parton with a given x inside the proton is parametrized by the parton distribution functions (PDF).
- The PDFs have, besides the dependency on x, a dependency on the Q² (Q: the scale of the momentum transfer in a given process).

$$x = \frac{m_{ll}}{\sqrt{s}} e^{y_{ll}}$$

- Different dilepton invariant masses m₁ and different rapidities y₁ probe different values of the parton x.
- The measurement of Drell-Yan production of dilepton pairs provides an important test of QCD, which can also provide constraints on the parton distribution functions (PDFs) of the proton.
- In particular measurements differential in dilepton rapidity, y_{II}, provide access to the momentum fraction, Bjorken x, of the participating partons in the interaction, which kinematically extends to higher x as the invariant mass, m_{II}, increases.

 Latest ATLAS analysis with 20.3 fb⁻¹ at √s = 8 TeV resulting uncertainties of 2% at 200 GeV & 11% at 1 TeV (2012 data)

- Current analysis:
- → The integrated luminosity has increased to 139 fb⁻¹ \rightarrow smaller statistical uncertainties
- → Increase in \sqrt{s} to 13 TeV, the analysis probes even higher parton momentum fraction

Signal and Background Samples

Process	Generator
Drell-Yan	Powheg
Photon-Induced	Pythia
$t \overline{t}$	Powheg
Diboson	Sherpa
W+jets	Powheg

- DY samples are generated in 13 bins of true dilepton invariant mass between 116 GeV and 3000 GeV → ensure adequate statistics at high invariant mass.
- Background contribution comes from the tt

 Diboson and W+jets & multijets processes.

- The production of the simulated events is performed on the LHC Computing Grid in several steps:
 - ESD (Event Summary Data): the whole information on detector level is transformed into information on object level
 - AOD (Analysis Object Data): only contain information about specific physics objects which are needed for the analysis.
 - DAOD: extraction of the AODs to a compressed version, so-called derivation \rightarrow targeting a specific analysis signature, which in our case is at least one lepton in the event.
 - Further sample size reduction is performed by applying additional identification and isolation requirements -> the event selection is performed using the AnalysisTop package within the Athena framework and the information is stored into ROOT Ntuples.

The ATLAS Detector

- Inner Detector (ID) surrounded by superconducting solenoid magnet
 - · Pixel detector, semiconductor tracker, transition radiation tracker

- Electromagnetic (EM) Calorimeter (lead-liquid argon (LAr) sampling calorimeter) :
 - barrel section
 - two end-cap sections
- Hadronic Calorimeter :
 - · scintillator-tile barrel calorimeter
 - liquid argon end-cap and forward calorimeters
- Air-Core Toroid Magnets :
 - instrumented with muon chambers
- Muon Spectrometer :
 - · precision tracking chambers
 - fast detectors for triggering

Object and event selection

Electron Selection

- E_T > 30 & $|\eta|$ < 2.47 excluding track region 1.37 < $|\eta|$ < 1.52 from the barrel-endcap transition
- "Medium" identification requirements

Muon selection

- $P_{T} > 30 \& |\eta| < 2.5$
- "Medium" identification working point

Event Selection & Reconstruction

- Event cleaning: The event needs to be measured in a time period where the detector is fully operational. Additional event-level vetoes are applied to reject bad or corrupted events, e.g. due to noise bursts, based on data-quality flags of certain detector subsystem.
- Primary vertex: Events are required to have a primary vertex with at least two associated tracks.
- Trigger selection : Events are required to satisfy single lepton or dilepton trigger requirements (electron/muon).
- Exactly two same-flavour leptons (third lepton veto)
- From the available same-flavour leptons, the leading and subleading leptons must fulfill $p_{\tau} > 40$ and $p_{\tau} > 30$ respectively.
- Opposite sign requirement
- m > 116 GeV

Lepton Isolation

- One of the most powerful tools to discriminate signal against background.
- Define a proper "isolation energy" around leptons to reduce the contamination from nonprompt and fake objects.
- Isolation consists in assessing the activity surrounding the trajectory of the lepton in the Inner Detector (ID) and the Calorimeter.
- To calculate the isolation variables, a cone in the η and ϕ plane is defined around the particle and the energy of close-by objects falling in this cone is added, having subtracted the contribution of the particle itself.

Calorimeter Isolation The fully corrected topoetcone calorimeter isolation variable is computed as:

$$E_{\rm T}^{\rm coneXX} = E_{\rm T,raw}^{\rm isolXX} - E_{\rm T,core} - E_{\rm T,leakage}(E_{\rm T},\eta,\Delta R) - E_{\rm T,pile-up}(\eta,\Delta R),$$

*XX : refers to the size of the cone , ΔR = XX/100.

Track Isolation

The track isolation variable, called *ptcone* (p_T^{coneXX}) is computed by summing the transverse momentum of selected tracks within a cone centered around the lepton track direction. For leptons is defined with a variable cone size, called *ptvarcone* $(p_T^{varconeXX})$ - the cone size shrinks for larger momentum of the lepton:

$$\Delta R = \min\left(\frac{10}{p_{\rm T}[{\rm GeV}]}, \Delta R_{\rm max}\right)$$

 ΔR_{max} :maximum cone size, (typically 0.2 to 0.4)

Two variants of the ptvarcone variable, ptvarconeXX($p_T^{varconeXX}$) and ptvarconeXX_TightTTVA_pt1000 ($p_{T,TTVA}^{varconeXX}$), requiring different selections for the tracks used to build them.

→ Particle Flow Isolation

It combines the ID and calorimeter information to take the best of each detector.

The particle flow isolation consists in a charged part, that is equivalent to the track isolation and a neutral part called *neflowisol*, built in a similar way with the previously described calorimeter isolation but using the neutral energy flow leptons. 10 / 19

Standard Isolation Working Points

> The different electron isolation WPs used in our study are represented in the table

WPs	Calorimeter isolation	Track isolation	
TightTrackOnly	-	ptvarcone30_TightTTVALooseCone_pt1000/ $p_T < 0.06$	
$TightTrackOnly_FixedRad$	- ptvarcone30_TightTTVALooseCone_pt1000/ $p_T < 0.06$ k		
		ptcone20_TightTTVALooseCone_pt1000/ $p_T < 0.06$	
Tight	topoetcone $20/p_T < 0.06$	ptvarcone20_TightTTVA_pt1000/ $p_T < 0.06$	
Loose	topoetcone $20/p_T < 0.2$	ptvarcone20_TightTTVA_pt1000/ $p_T < 0.06$	
PflowTight	$(ptvarcone30_TightTTVALooseCone_pt500+0.4neflowisol20)/p_T < 0.045$		

> The different muon isolation WPs used in our study are represented in the table

WPs	Calorimeter isolation	Track isolation		
Loose	topoetcone $20/p_T < 0.03$	ptvarcone $30/p_T < 0.15$		
Tight	topoetcone $20/p_T < 0.06$	ptvarcone $30/p_T < 0.06$		
${\it TightTrackOnly_FixedRad}$	-	ptvarcone30_TightTTVALooseCone_pt1000/ $p_T < 0.06$ below 50 GeV,		
	ptcone20_TightTTVALooseCone_pt1000/ $p_T < 0.06$			
PflowTight	$(ptvarcone30_TightTTVALooseCone_pt500+0.4neflowisol20)/p_T < 0.045$			
PflowLoose	$(ptvarcone30_TightTTVALooseCone_pt500+0.4neflowisol20)/p_T < 0.16$			

My Contribution

- My task was to study and decide which isolation WP is best suited for the DY measurement.
- Production of the ROOT Ntuples \rightarrow Full analysis selection is applied.

Dielectron and dimuon mass distributions for the range 116-3000 GeV for "Loose" Isolation WP

Evaluation Method

In order to compare the different isolation working points we use a criteria called significance, defined as:

```
significance = S/\sqrt{(S+B)}
```

It is a non-dimensional number, which we use to measure something more precisely.

Signal = DY events Background = TopQuark + Diboson + W+jets events

Table with mass range and corresponding significance for each electron isolation WP

$m_{ee} (\text{GeV})$	Loose	Tight	TightTrackOnly	TightTrackOnly_FixedRad	PflowTight
116-130	265	252	263	262	254
130-150	268	257	266	265	260
150-175	202	195	201	200	197
175-200	142.4	138.7	142.1	141.8	140.5
200-230	114.3	111.8	114.2	113.9	113.2
230-260	85.2	83.6	85.2	85.00	84.7
260-300	74.2	73.1	74.2	74.0	73.9
300-380	71.1	70.4	71.2	71.1	71.0
380-500	51.7	51.4	51.9	51.8	51.7
500-700	36.2	36.0	36.2	36.1	36.1
700-1000	21.0	21.0	21.0	21.0	21.0
1000-1500	11.2	11.2	11.2	11.2	11.2
1500-3000	4.8	4.8	4.8	4.8	4.8

Table with mass range and corresponding significance for each muon isolation WP

$m_{\mu\mu} (\text{GeV})$	Loose	Tight	PflowTight	PflowLoose	TightTrackOnly_FixedRad
116-130	537	540	531	555	550
130-150	538	539	531	550	546
150-175	402.4	401.5	396.6	407.2	405.0
175-200	282.6	281.5	278.8	284.4	283.2
200-230	225.9	224.7	222.8	226.4	225.6
230-260	169.3	168.3	167.2	169.4	168.9
260-300	148.6	147.7	146.9	148.5	148.1
300-380	141.3	140.6	140.0	141.3	140.9
380-500	102.5	102.0	101.6	102.4	102.2
500-700	70.6	70.3	70.0	70.6	70.4
700-1000	40.6	40.4	40.3	40.6	40.5
1000-1500	$\overline{20.7}$	20.6	20.5	20.7	20.7
1500-3000	8.6	8.6	8.5	8.6	8.6

Conclusions

- The analysis is not sensitive to the isolation configuration used.
 - main background sources are dominated by the real leptons in the dilepton mass range considered.
- Statistical uncertainties are expected to be ~2% per channel in the 700-1000 GeV range, which is about a factor of five improvement on the previous results.
 - These uncertainties would become compatible to the expected systematic uncertainties in this dilepton mass range

Back up Slides

- The quarks carry electric charges themselves → can radiate photons.
- Photon-Induced (PI) process arises from a yy, yq or yq initial state.
- The latter two involve photon absorption and Z/y* emission with a subsequent dilepton decay.
- It is consider as part of the signal.

• The four vectors of the incoming partons can be written as (assuming $m_{parton} = 0$):

$$p_j^{\mu} = \frac{\sqrt{s}}{2}(x_j, 0, 0, x_j), p_k^{\mu} = \frac{\sqrt{s}}{2}(x_k, 0, 0, -x_k)$$

• Using the four vectors, the rapidity of the leptons pair can be expressed as:

$$y_{ll} = \frac{1}{2}\log(\frac{x_j}{x_k})$$

• Since the invariant mass of the dilepton system is equal to the center-of-mass energy of the colliding partons $m_{\parallel}^2 = x_i x_k s$:

$$x_j = \frac{m_{ll}}{\sqrt{s}} e^{y_{ll}}, x_k = \frac{m_{ll}}{\sqrt{s}} e^{-y_{ll}}$$
 18 / 19

Reconstruction and Identification

Electrons

- An electron candidate is reconstructed from a cluster built from energy deposits in the EM calorimeter and a matched track (or tracks).
- The identification of prompt electrons relies on a likelihood discriminant constructed from quantities measured in the ID, the calorimeter and the combined information.

Muons

- Muon reconstruction is first performed independently in the ID and MS. The information from individual subdetectors is then combined to form the muon tracks that are used in physics analyses.
- Muon identification is performed by applying quality requirements that suppress background, mainly from pion and kaon decays, while selecting prompt muons with high efficiency and/or guaranteeing a robust momentum measurement.