

Université de Strasbourg

Master of Subatomic Physics and Astroparticles 2019-2020

VERTEX DETECTOR OPTIMIZATION AT THE INTERNATIONAL LINEAR COLLIDER

Hasan DARWISH

Under the supervision of Auguste BESSON and Ziad EL BITAR at PICSEL group at IPHC

- ILC Context
- ILC Vertex Detector Requirements
- Optimization of the ILC Vertex Detector Performance
- Summary and Outlook

International Linear Collider (ILC)

- Future e⁺ e⁻ collider (beside CLIC, FCC-ee, CEPC)
- Proposed to be built in Japan (~2030)
- 20.5 Km long.
- SC RF cavities.
- Polarised beams: e⁻= 80% ; e⁺= 30%.
- Luminosity:
 - Baseline: 1.35x10³⁴cm⁻²s⁻¹ (upgradable).
- Tunable center-of-mass energy:
 - Initially: 250 GeV
 - Possible Upgrades: 350, 500, 1000 GeV
- Two detectors one IP: ILD and SiD (push-pull mode).
- Environment:
 - Clean Environment (No QCD background)
 - Fully reconstructable channels.
 - Well known initial states.

Physics at ILC

• Higgs Physics

Mass, coupling, spin..

- BSM searches SUSY, DM, Exotics..
- Top Quark
- E-W Precision studies
- Physics Advantages:
 - Precise theoretical predictions.
 - main interaction cross-sections are one to two orders of magnitude below the total cross-sections.
 - The tunable properties feature is exploited for different physics topics.
- Experimental conditions allow to push the detector resolution at their limits.
- High precision heavy flavour tagging is required for tagging most of the interesting channels.
- High performance vertex detector is required.

few % deviation compared to the standard model values, so one needs to measure these couplings typically at the percent level.

- Reconstruct charged particles trajectories.
- Measuring particles momentum.
- Reconstruct Vertices:
 - Primary vertex:

IP, where particles collide.

- Secondary vertex:

where unstable particles decay (b, c and tau tagging). or particles interact with detector material.

- Impact parameter resolution:
 - $\sigma_{IP} = a \oplus b/p.sin^{3/2}\theta$

 $\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}$

b depends on the material budget (related to MS formula).

a depends on the spatial resolution and the geometry.

- large level arm, low inner radius 🚽 very good resolution.

5

Experimental Conditions

• Beam structure:

- 5 trains per second.
- beamless time: ~200 ms.
- 2600 bunch per train.
- one bunch every ~300 ns.
- Key advantages of this duty cycle:
 - No trigger system/full readout of data.
 - decreasing the power consumption.
 - minimising the cooling system.
- Beam-Related Backgrounds:

- Beamstrahlung e⁺ e⁻ dominating the hit density of the vertex detector.

train duration = 727 (baseline) or 961 (L upgrade) μs ◀-----►

200 or 100 ms (5 or 10 Hz)

1 train = 1314 (baseline) or 2625 (Lupgrade) bunches

VXD Requirements:

- Excellent flavour tagging.
- Low momentum tracking.
- Technology requirements:
 - Spatial resolution: ~3 μm
 - Material budget: ~0.15% X_0 per layer.
 - Adapted read out time (typically ~ μ s).
 - Acceptable power consumption (~ 20 mW/cm²
 - -> VXD: ~20 W with total surface: ~0.35 m2).
 - Radiation hardness (~10¹¹ neutrons equivalent

(1MeV) (non ionising damage) ~ 50 kRad (ionising damage)).

7

ILD tracking system:

- Vertex Detector (VXD)
 - Inner most detector.
 - Barrel geometry.
 - 3 double-sided layers.
 - 1 mm from beampipe.
 - 2 mm in between the double layer.
- Silicon Internal Tracker (SIT)
 - 2 double-sided silicon layers.
- Forward Tracking Disks (FTD)
 - 7 disks in the forward region.
- Time Projection Chamber (TPC)
 - Gas-filled chamber.
 - Continuous 3-D tracking.

VXD Baseline Technology:

- CMOS Pixel Sensors:
 - Highly granular: $\sigma_{sp} \approx 3-5 \ \mu m$ ($\approx 17-30 \ \mu m$ pitch).
 - Low material budget: 50 $\mu m.$
 - Time resolution: few μ s.
 - Monolithic technology.
- Applications: STAR, CBM, ALICE-ITS upgrade.
- Offers the best compromise between the different parameters contributing to the Vertex detector performance.

<u>Guariguanchi:</u>

- Tool:
- Developed by A.Perez from PICSEL group at IPHC.
- Based on ROOT framework.
- Used for ILD tracking system optimization.
- Inputs:
 - Geometry.
 - Properties (material budget, spatial resolution, readout time).
- Analyses:
 - Detector geometry visualization.
 - Impact parameter resolution as function of momentum(p, θ , ϕ).
 - Tracking efficiency analysis.
 - Material budget distribution in the detector.

Studies on VXD:

- Spatial resolution
- Material budget
- Beam pipe
- Layers number

a parameters vs θ

Varying the spatial resolution of the layers:

- L1/6: 2.8/4/4/4/4/4 μm
- L1/6: 3/4/4/4/4/4 μm
- L1/6: 4/4/4/4/4/μm
- L1/6: 4/4/5/5/5/5 μm
- L1/6: 5/5/5/5/5 μm

- Relaxing the spatial resolution is acceptable for some range.
- ✓ Optimizing only the first layer didn't really worth to do.

a parameters vs θ

Varying the material budget of the layers:

- $0.20\% X_0$ per ladder
- 0.30% X₀ per ladder (baseline)
- 0.35% X₀ per ladder
- $0.40\% X_0$ per ladder
- $0.50\% X_0$ per ladder
- ✓ 0.30%-->0.40% X₀ is an acceptable range and we can be a little tolerant regarding the material budget target.

a parameters vs θ

Varying the number of double layers:

- 2 double-sided layers
- 3 double-sided layers
- 4 double-sided layers

- ✓ The 4 double-sided layers option is not really useful (almost the same a and worse b).
- ✓ The 2 double-sided layers option may seems interesting but from experience on several vertex detectors it is not really (worse tracking efficiency).

Varying the number of layers:

- 5 single layers
- 3 double-sided layers

✓ We may pay a price in degrading b when we choose the 3 double layers option, but it is better for the other parameters like pattern recognition.

Varying the beam pipe radius:

- 1.075 cm beam pipe radius
- 1.175 cm beam pipe radius
- 1.275 cm beam pipe radius
- 1.375 cm beam pipe radius (baseline)
- ✓ Decreasing in the beam pipe radius is limited by the beam background but it seems interesting to study the impact of decreasing it down to a certain value.

First proposed geometry:

Summary and Outlook

- ✓ High challenging requirements.
- ✓ Different properties contribute and overlap.
- ✓ A compromise between the properties is needed.
- ✓ The geometry design seems to be robust against some types of changes.
- There is a degree of freedom on some of the requirements which give an insight that the goal of a very good detector can be reached.
- ✓ Progress in technology will define the limits at the end.

Next steps:

- Full simulations.
- > Heavy flavour tagging performances.
- Tracking efficiency studies.
- Complete physics analysis.

Backup Slides

f. 20

Figures per layers										
Layer	0 1		2 3		4	5				
Layer Radius (mm)	16	18	37	39	58	60				
Layer $ z max (mm)$	61.9	61.9	123.8	123.8	123.8	123.8				
Chip Pixel Number in X	1440	1440	1440	1440	1440	1440				
Chip Pixel Number in Y	512	512	1024	1024	1024	1024				
Chip Pixel PitchX (μm)	21.5	21.5	21.5	21.5	21.5 21.5					
Chip Pixel PitchY (μm)	21.5	21.5	21.5	21.5	21.5	21.5				
Chip Dimension X (mm) (sensitive area)	30.96	30.96	30.96	30.96	30.96	30.96				
Chip Dimension Y (mm) (sensitive area)	11.01	11.01	22.02	22.02	22.02	22.02				
Chip Dimension Y (mm) (non sensitive area)	2.0	2.0	2.0	2.0	2.0	2.0				
Chip Surface (mm^2) (sensitive area)	341	341	682	682	682	682				
Chip Surface (mm^2) (non sensitive area)	62	62	62	62	62	62				
Chip Surface (mm^2) (total)	403	403	744	744	744	744				
Ladder Length (mm) (sensitive area)	123.8	123.8	123.8	123.8	123.8	123.8				
Ladder Width (mm) (sensitive area)	11.01	11.01	22.02	22.02	22.02	22.02				
N chip per ladder on each side	4	4	4	4	4	4				
Layer Surface (cm^2) (sensitive area)	136.3	136.3	599.7	599.7	926.9	926.9				
N Chips Per Layer	40	40	88	88	136	136				
Total surface (cm^2) (sensitive area)	34	84								
Figures per double layers										
	Laye	r 0/1	Laye	r 2/3	Layer 4/5					
N Chips in z	4	1	4+4	1 = 8	4 + 4 = 8					
N Ladders	1	0	2×11	l = 22	$2 \times 17 = 34$					
N Chips Per double Layer	80		176		272					
N Chips (per architecture)	80 448									
N Total Chips	528									

Table 2: VXD dimensions

ILD dimensions

Barrel	system	L				
System	R(in)	R(out) z	comments		
		/mm				
VTX	16	60	125	3 double layers	Silicon pixel sensors,	
				layer 1:	layer 2:	layer 3-6
				$\sigma < 3\mu m$	$\sigma < 6 \mu m$	$\sigma < 4\mu m$
Silicon						
- SIT	153	300	644	2 silicon strip layers	$\sigma = 7\mu m$	
- SET	1811		2300	2 silicon strip layers	$\sigma=7\mu m$	
- TPC	330	1808	2350	MPGD readout	$1\times 6\mathrm{mm}^2~\mathrm{pads}$	$\sigma = 60 \mu m$ at zero drift
ECAL	1843	2028	2350	W absorber	SIECAL	30 Silicon sensor lay ers, $5 \times 5 \text{ mm}^2$ cells
					EcECAL	30 Scintillator layers $5 \times 45 \text{ mm}^2 \text{ strips}$
HCAL	2058	3410	2350	Fe absorber	AHCAL	48 Scintillator layers 3×3 cm ² cells
					SDHCAL	48 Gas RPC layers $1 \times 1 \text{ cm}^2$ cells
Coil	3440	4400	3950	3.5 T field	2λ	
Muon	4450	7755	280	14 scintillator layers		

SIT characteristics (current baseline = false double-sided Si microstrips)]					
	Geometry Characteristics Materi		Material	FTD characteristics (design baseline: pixels for two inner disks, micros						
R[mm]	Z[mm]	$\cos\theta$	Resolution R- $\phi[\mu m]$	Time [ns]	RL[%]	Geometry			Characteristics	Material
153	368	0.910	R: $\sigma = 7.0$,	307.7 (153.8)	0.65	R[mm]	$R[mm]$ $Z[mm]$ $\cos\theta$		Resolution R- $\phi[\mu m]$	RL[%]
300	644	0.902	z: σ=50.0	$\sigma = 80.0$	0.65	39-164 220 0.985-0.802			0.25-0.5	
SET characteristics (current baseline = false double-sided Si microstrips)					49.6-164	371.3	0.991-0.914	$\sigma = 3-6$	0.25-0.5	
	Geometry Characteristics N		Material	70.1-308	644.9	0.994-0.902		0.65		
R[mm]	Z[mm]	$\cos\theta$	Resolution R- ϕ [µm]	Time [ns]	RL[%]	100.3-309	1046.1	0.994-0.959	- -	0.65
1811	2350	0.789	R: $\sigma = 7.0$,	307.7(153.8)	0.65	130.4-309	1447.3	0.995-0.998	$\sigma = 7.0$	0.65
ETD characteristics (current baseline = single-sided Si micro-strips, same as SET ones)					100.4-000	1040 5	0.000 0.000	0-1.0	0.00	
				160.5-309	1848.5	0.996-0.986	1	0.05		
Geometry Characteristics		Material	190.5-309	2250	0.996-0.990		0.65			
R[mm]	Z[mm]	$\cos\theta$	Resolution R	$-\phi[\mu m]$	RL[%]			1	•	1
419.3-1822.7	2420	0.985-0.799	x:σ=7.	0	0.65	Ī				-

Reminder : Geometry in the forward region

190.5-309

2250

0.996-0.990

0.65

Varying in the forward disks positions:

