

CALCUL DE LA DEUXIÈME HARMONIQUE DE L'ÉQUATION DE BOLTZMANN AVEC UN CODE MONTE-CARLO

Bey Julien 18/06/2020 1

SOMMAIRE

- Introduction
- Monte Carlo
- Algorithme
- Application
- Conclusion

Bey Julien 18/06/2020 2

CONTEXTE

- Modélisation des réacteurs nucléaires
- Modéliser grâce à une équation aux valeurs propres
 - Valeur propre dominante caractérise la distance à la criticité
- Utilisation de méthode de Monte Carlo
 - Méthode de référence
- Objectif du stage
 - Développer un indicateur de convergence pour les utilisateurs
 - Estimer la première harmonique

EQUATION DE BOLTZMANN

$$T\varphi_i(r,\Omega,E) = \frac{1}{k_i} F\varphi_i(r,\Omega,E)$$

- Hypothèses : stationnaire, gaz
- T l'opérateur de transport $T(\phi_i) = \Omega. \nabla + \Sigma_t(r, E) \int_{E_t} \int_{4\pi} d\Omega' \Sigma_s(r, \Omega', E' \to (\Omega, E))$
- F l'opérateur de fission $F(\varphi_i) = \frac{\chi}{4\pi} \int_{E'} dE' \int_{4\pi} d\Omega' \nu_f \Sigma_f(r, E')$
- r, Ω, E respectivement la position, la direction et l'énergie du neutron
- $k_i \rightarrow$ facteur équilibre entre les disparitions de neutrons (T) et les apparitions par fission (F)
- ϕ_i représente le flux neutronique pour la i-ième valeur propre
- φ_i densité des neutrons ayant la même vitesse et direction : φ_i =n*v
- $|k_0| > |k_1| > |k_2| > \dots > |k_m|$

ITÉRATION DE LA PUISSANCE

- Simulation des neutrons générations par générations
- De la naissance à la mort des neutrons
- Les neutrons de fissions stockés dans un buffer pour la génération suivante

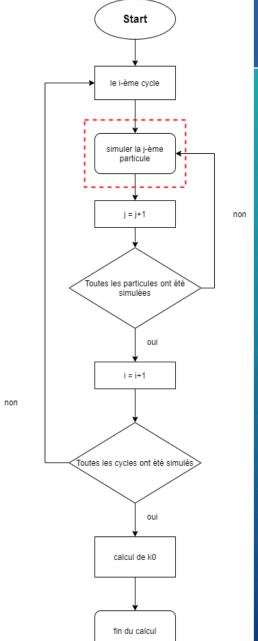
$$H\varphi_i(r, \Omega, E) = k_i \varphi_i(r, \Omega, E)$$

$$k_0 = \lim_{n \to \infty} \frac{H^n \varphi}{H^{n-1} \varphi} \qquad \qquad \varphi_0 = \lim_{n \to \infty} \frac{H^n \varphi}{k_0^n}$$

• $H = FT^{-1}$

RÉSOLUTION MONTE CARLO

- Méthode probabiliste
 - Repose sur des tirages aléatoires
 - Résultats estimés avec des erreurs statistiques
- Modélisation individuelle des comportements des neutrons
 - Simulation des interactions neutron/noyau
- Méthode de référence
 - Convergence en $1/\sqrt{n}$
 - Traitement continu des variables

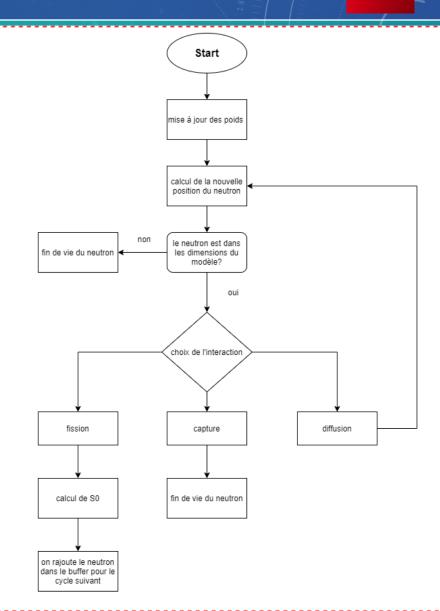


- Simulation particules par particules
- Simulation sur plusieurs générations
- Itération de la puissance pour obtenir k0

 Neutron suivra une ligne droite avant une collision

$$P(x \to x') = \Sigma(x')e^{-\int_x^{x'} \Sigma(y)dy}$$

- Interaction avec un noyau \rightarrow probabilité $^{\Sigma_i}/_{\Sigma_t}$
- Vie pour la diffusion et mort pour la capture et la fission



MÉTHODE DE RÉDUCTION DE VARIANCE

- Pas d'absorption de neutrons
- Introduction d'un poids statistique pour compenser la modification des lois physiques
- Obtenir des résultats non biaisés

Capture implicite

$$w' = w \frac{\Sigma_s}{\Sigma}$$

Diffusion avec un changement de poids

Fission forcée

Probabilité de faire une fission :
$$\left[v_f \frac{\Sigma_f}{\Sigma} + \xi\right]$$

Evènement de fission à chaque collision

CONTRÔLE DE LA POPULATION

Permet que le nombre de neutrons soit stable au début des générations

Roulette russe

Si $w > w_{th} \rightarrow$ poids conservé

Splitting

Si $w > w_{split} \rightarrow n$ copies

Sinon:

 $w > \xi \rightarrow$ conservé avec un poids de 1

 $w < \xi \rightarrow$ le neutron est tué

 ξ nombre aléatoire entre 0 et 1

Avec un poids :
$$w' = \frac{w}{n}$$

RAPPORT DE DOMINANCE

 $\rho = k1/k0$

- Rapport de valeurs propres
- Compris entre 0 et 1
- L'itération de la puissance converge vers k0 en ρ^n
- Permet d'avoir un nombre d'estimation du nombre de générations
- Convergence dépend de la séparation entre k0 et k1

MATRICE DE FISSION

$$F_{i,j} = \frac{1}{S_j} \int_{r \in V_i} d_r \int_{r' \in V_j} \iint d_E d_\Omega \nu_f \, \Sigma_f(r, E) \iint d_E d_\Omega \nu_f \, \xi(E', \Omega') S(r') S(r') S(r', E, \Omega, r', E', \Omega')$$

 $F_{i,j}$ \rightarrow Nombre de neutrons de fission nés dans la région i en raison d'un neutron de fission de la région j

- → La valeur propre associée au mode fondamental de cette matrice et le vecteur propre fondamental est la distribution de la source de neutrons de fission
- → Fabriqué en utilisant uniquement les emplacements des sources de neutrons de fission au début et à la fin de chaque génération

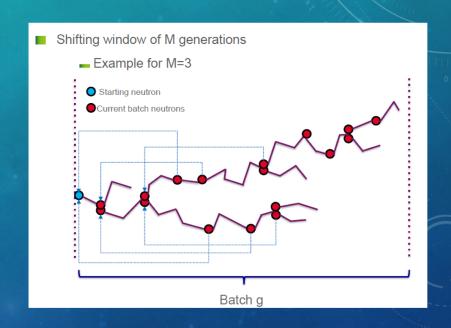
ALGORITHME

$$S_{1}^{(n)}(r) = \frac{1}{k_{1}} \left[\int d_{r'} H(r' \to r) \left(\frac{S_{1}^{(n-1)}(r)}{S_{0}^{(n-1)}(r')} - \frac{\left\langle \varphi_{0}^{\dagger}, S_{1}^{(n-1)} \right\rangle}{\left\langle \varphi_{0}^{\dagger}, S_{0}^{(n-1)} \right\rangle} \right) S_{0}^{(n-1)}(r') \right]$$

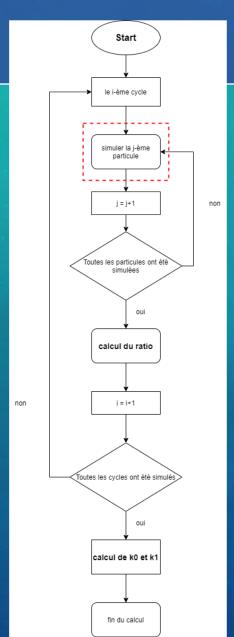
- S_0 et S_1 respectivement premier et deuxième vecteur propre
- $S = F\varphi$
- φ_0^{\dagger} le flux adjoint du mode fondamental
- $H = FT^{-1}$
- Les brackets → intégrale sur le volume, direction et énergie du neutron

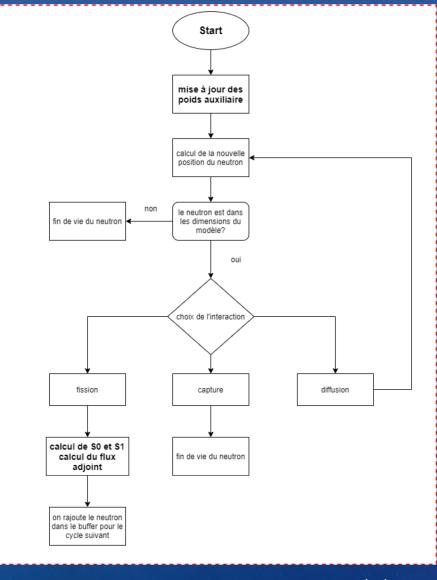
ITERATED FISSION PROBABILITY

- Calcul du flux adjoint → l'importance du neutron dans la chaîne de réaction
- Solution de l'équation de Boltzmann adjointe par définition
- Suivre l'identifiant du neutron pour suivre la chaîne de réaction



Bey Julien 18/06/2020 14





MODÈLE CRAYON

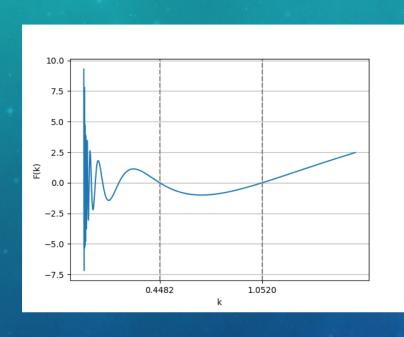
- Version à une dimension de l'équation de Boltzmann
- Une seule énergie → neutron même vitesse
- Propagation soit vers la droite soit vers la gauche
- Équation implicite pour k :

$$F(k) = \cosh\left(z\sqrt{1-c(k)}\right) + \left(1 - \frac{c(k)}{2}\right) \frac{\sinh\left(z\sqrt{1-c(k)}\right)}{\sqrt{1-c(k)}} = 0$$

Avec z = L
$$\Sigma$$
 et $c(k) = p_s + p_f \frac{v_f}{k}$

Bey Julien

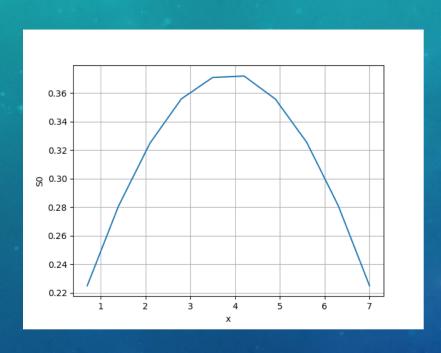
RÉSULTAT ANALYTIQUE



- Calcul avec un algorithme de Newton-Raphson
- $k_0^{ref} = 1.05197$
- $k_1^{ref} = 0.44819$

RÉSULTAT MONTE-CARLO

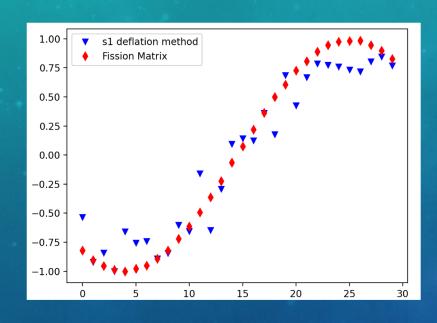
Avec l'itération de la puissance



- $k_0^{ref} = 1.05197$
- k0= 1.05151, std = 0.00094943

RÉSULTAT MONTE-CARLO

Avec la méthode de la déflation



- $k_1^{ref} = 0.44819$
- On différencie les poids auxiliaire positif et négatif
- k1_plus= 0.877571, std_plus=0.00203129
- k1_moins= 0.878595, std_moins=0.0020686
- Matrix de fission: moyenné sur toutes les générations
- Deflation method : normalisé à une génération donnée

- Bon résultat pour k_0
- S_1 forme du flux neutronique correcte, mauvaise convergence
- Convergence avec le calcul positif ou négatif pour k_1
- Pas la bonne solution pour $k_1 \rightarrow$ changement d'hypothèse

 \rightarrow calcul de k_1 par maille