

Gaseous detectors for neutrino physics at the ESS GanESS

F. Monrabal

XeSat, Coimbra May 2022

European Research Council

Neutrinos: what we know

Interact only weakly

No color, no electric charge

Three light (<m_z/2) neutrino states

ve, vµ, vt flavors

Neutrino number density in Universe only outnumbered by photons $n(v+\overline{v}) \approx 100 \text{ cm}^{-3} \text{ per flavor}$

From neutrino oscillations:

Neutrinos are massive (lightest known

fermions)

Large flavor mixing

Neutrino detectors

COHERENT NEUTRINO NUCLEUS SCATTERING

Coherent Elastic Neutrino-nucleus scattering

Cross section increases as N². Four orders of magnitude increase for large nucleus!

Coherent Elastic Neutrino-nucleus scattering Very rich physics

. . .

Complementary to oscillation experiments. Sterile neutrinos Neutrino magnetic moment

Sensitivity to Non-Study of **Standard Interactions** Neutral Currents **Study of the Nuclear** $\sigma \sim N^2$, structure Effective neutrino charge radius New types of dark matter particles

Detecting CEvNS

CEvNS sources, must be sufficiently intense in yield, and low enough in neutrino energy so the coherence condition can be satisfied.

Detecting CEvNS: First observation

Detection of the coherent scattering less than 5 years ago demonstrates a new mechanism to observe neutrinos.

A new opportunity for CEvNS

The European Spallation Source (ESS)

- The ESS will combine the world's most powerful superconducting proton linac with an advanced hydrogen moderator, generating the most intense neutron beams for multi-disciplinary science.
- It will also provide an order of magnitude increase in neutrino flux with respect to the SNS.
- A great opportunity for Europe to lead this physics program!

ESS – A long-pulse spallation source

	SNS	ESS
Average power	1.4 MW	5 MW
Proton pulse length	695 ns	2.86 ms
Peak power	34 GW	125 MW
Energy per pulse	24 kJ	357 kJ
Pulse repetition rate	60 Hz	14 Hz

A new opportunity for CEvNS

Comparison with current and future facilities

- ESS will produce the largest low energy neutrino flux of the next generation facilities.
- This is a unique opportunity that allows the use of small detectors.
- Diversity of technologies not statistically limited guarantees the phenomenological exploitation of the measurements.

A new opportunity for CEvNS ESS vs SNS

- v production @ ESS is x9.2 @ SNS
- Neutrino flux depends on proton current and on proton energy. v/p grows with Ep
- signal-to-background depends on square root of duty cycle (slightly better signal/bckg at ESS).

and Geant4 physics lists

A new opportunity for CEvNS Background at the ESS

- CEvNS signals.
- Working together with ESS personnel, Ben Gurion University and U. Chicago.
- Two promising locations have already been identified.
- Steady-state background can be subtracted.

transportation code using

Adding elements of the building structure using NAVISWORKS 3-D layouts

• We need to find locations where the prompt neutrons from the ESS tungsten target do not compete with

Detecting CEvNS: Future observations

Two locations already under study.

Detecting CEvNS Detectors

Ultra low energy threshold is crucial

Interesting physics concentrates at low energies

Detecting CEvNS Detectors COHERENT 0.6 Ar+Xe Ar 0.5 Xe 0.40.3 Operation with different $\varepsilon^{u}_{\mu\mu}$ nuclei helps breaking 0.2 degeneracies 0.1 0.0 -0.1

Detecting CEvNS Specs.

• Detectors with low energy threshold

• Operation with different nuclei

es

JHEP 02 (2020) 123 Coherent Elastic Neutrino-Nucleus Scattering at the European Spallation Source

D. Baxter,¹ J.I. Collar,^{1,}* P. Coloma,^{2,}[†] C.E. Dahl,^{3,4} I. Esteban,^{5,}[‡] P. Ferrario,^{6,7,§} J.J. Gomez-Cadenas,^{6,7,} M. C. Gonzalez–Garcia,^{5,8,9,**} A.R.L. Kavner,¹ C.M. Lewis,¹

F. Monrabal,^{6,7,††} J. Muñoz Vidal,⁶ P. Privitera,¹ K. Ramanathan,¹ and J. Renner¹⁰

Detector Technology	Target	Mass	Steady-state	E_{th}	QF	E_{th}	$\Delta E/E$ (%)	E _{max}	$CE\nu NS NR/yr$
	nucleus	(kg)	background	(keV_{ee})	(%)	$ (\text{keV}_{nr}) $	at E_{th}	(keV_{nr})	@20m, > E_{th}
Cryogenic scintillator	CsI	22.5	10 ckkd	0.1	~10 71	1	30	46.1	8,405
Charge-coupled device	Si	1	$1 \mathrm{ckkd}$	$0.007 (2e^{-})$	4-30 97	0.16	60	212.9	80
High-pressure gaseous TPC	Xe	20	10 ckkd	0.18	20 104	0.9	40	45.6	7,770
p-type point contact HPGe	Ge	7	$15 \mathrm{ckkd}$	0.12	20 118	0.6	15	78.9	1,610
Scintillating bubble chamber	Ar	10	0.1 c/kg-day	-	-	0.1	~ 40	150.0	1,380
Standard bubble chamber	C_3F_8	10	0.1 c/kg-day	_	-	2	40	329.6	515

Technologies sensitive to 1 keVnr nuclear recoils:

- Interesting physics concentrates at low-E (e.g.) n magnetic moment).
- Maximum statistics.
- Interesting CsI/Xe overlap (same response,
 - different systematics)
- Gas detectors one of the relevant technologies.

Gaseous detectors?

solid scintillators (Csl) or liquid detectors.

limited by statistics

The main problem with gaseous detectors is their relatively low density when compared with

Thanks to the large neutrino flux produced by the ESS, detectors with ~20 kg won't be

Gaseous detectors?

High pressure gaseous detector have other advantages:

- Simpler, no need of a cryogenic system.
- Larger EL amplification: Signals as low as 1-2 ionized electrons can be detected. This reduces the expected energy threshold to less than 1 keVee.
- Allow to operate with different nuclei in the same set-up with minimal increase of the costs.
- High pressure xenon technology developed by the NEXT collaboration for bb0v searches.
 - Most of the solutions already developed for low-background experiments.
 - Some R&D will be needed for very low energies, and possible higher pressures.

Energy resolution in HPXe

- Very good energy resolution up to ~50 bar.
- Best experimental result: 0.6%@662keV.
- It will allow for a better spectrum reconstruction, thus better sensitivity to deviations from SM.

Amplification preserving resolution: Electroluminescence

- More stable at high pressure, no need of quenchers.

• Emission of scintillation light after atom excitation by a charge accelerated by a moderately large (no charge gain) electric field.

• Linear process, huge gain (1500 ph./e-) at 3 < E/p < 6 kV/cm/bar.

• Almost no extra fluctuations during the amplification process.

GaNESS project

Initial steps

High pressure technology developed by the PI within the NEXT experiment

GaNESS project: GaP

The Gaseous Prototype (GaP) system

- Test for high pressure (up to 50 bar) and operation with different gases.
- Characterisation of the **response to nuclear recoil** at low energies.

Expected number of events for different values of the neutrino magnetic moment (blue-red) and different models of the quenching factor (solid-dashed)

GanESS concept

GanESS concept

GanESS concept

PMT plane

GaNESS project

The GanESS detector

- Optimised for reduced threshold.
- Operation with **different gases**.

GanESS Status Design of large detector

Symmetric medium size detector being designed

- Explore the possibility to introduce optical fibres to optimise light collection:
- Possibility to observe S1
- More uniform detector response

GanESS Status

High pressure noble gases laboratory being equipped at the DIPC

Two stages 10 to 50 bar compressor. Already designed for the large detector. Ready next month.

ator side

GanESS Status The Gaseous Prototype (GaP) system

- GaP vessel almost ready to operate (pressure tests passed last week).
- PMTs and inner pieces already at DIPC.
- Expected initial operation along summer.

GanESS Status

- Support for PMTs ready to be assembled.
- Protective window in design for a second phase.

GanESS Summary

- CEvNS detection opens a **new avenues in the** search of physics beyond the Standard Model.
- **ESS** will become the largest low-energy neutrino source. Perfect facility to study this process.
- The GanESS project, will produce a detector to observe the process at the ESS with a variety of nuclei.
- GanESS offers an opportunity to lead a worldclass neutrino program in the coming years with a large discovery potential.

