PARIS

Soemas Lenke

| es deux Infinis

Emission of Single and Few Electrons in

XENON1T and Limits on nght Dark Matter
Jean-Philippe Zopou

XeSAT conference
Coimbra 2022




The XENON1T

detector
(2016-2018)

The principle of detection with a double-phased TPC
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The Single and Few-Electron background
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Single Electrons

Possible interpretation
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Single electron

trains
X-Y Position Dependence

Investigation of the spatial
separation between the
primary S2 and its subsequent
delayed electrons

We observe a Cauchy-Lorentz
+ flat background describing
the (Ax, Ay) distribution of

delayed SE trains
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Combined Model

Displacement of delayed
electrons in x-y relative to the
most recent primary S2

Excess in data indicating
position correlation between
the primary S2 and delayed

electron emission, best
described by a Cauchy-
Lorentz distribution

Position correlated R < 15¢m
Position uncorrelated R > 20cm
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Single electron

trains
Temporal Dependence

*The evolution in time of the SE
trains rate follows a power-
law.

*The fitted power law for 1, 2
and 3-5 position correlated
electrons gives similar values

*The rate of position
uncorrelated electrons drops
sharply beyond the maximum
drift time and/or reduces more
slowly in time (presence of
contamination from position
correlated SEs)
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Single Electron

trains
Drift Time Dependence

*\We examine the dependence on
drift time of the primary S2

*\We calculate the number of
delayed SEs as a percentage of
the original primary S2 (electron-
lifetime corrected )

*Position correlation presents a
totally different behaviour wrt
position uncorrelated

e Observation consistent with the
theory that delayed electron
emission is a byproduct of
impurities in the LXe
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Search tor Sub-GeV Dark Matter
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Sub-GeV Dark 5 1 MeV: MxeV2/2
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Particle candidates for a light dark matter

S U b'G eV Da rk A hypothetical massive vector

Matter 1 € 1 boson A’ of a broken (dark) gauge
— _FWER _ _FHVE 4 2 AHAY group U(1), that kinetically mix
£ D 4F F, 2F F, 2mA,A A,

with the SM hypercharge. At low
energies the mixing is between A’
and a photon

In the absence of a Direct

Detection of WIMP DM a variety The Dark Sector interacts with the SM via the gauge
/
of theories predicting sub-GeV boson A -
DM particles with leptonic DM particles can scatter off bound electrons of the Xe T .
: r
interactions gained interest atom via A" exchange. wo cases are of interest
. F'ryy(g) = 1, heavy mediator,
Physics channels X . o X (nl;j{g am )
\P\ Zy
* DM-electron scattering cFr(q) = (ame/Q)z, ultra-light
vector mediator. (m, << am,)
eDark Photon absorption ) o
e \
Xy NS4

e ALP absorption
~ — q1Jon\P >4 q
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eSolar Dark Photons dink,. — dinkp  8uy,

The rate depends on the initial and final state
of the electron, the particular interaction and
the Halo model

» Special cases of more general
EFT models




.’. .'.....'... Continuous readout data of

Sub-GeV Dark
Matter search

SR1
Event selection

Cut Efficiency

Primary S2 in the drift Hard cut (reduction in
region exposure)

*\We select S2s in the region
[14, 150] PE corresponding
to 1-5 observed electrons

Selected S2 in the drift
region

86 %

*\We developed a number of Used for limit setting
hard cuts in order to
minimise the delayed
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k ionisation electrons n electrons

p.. .'......... The reconstruction effects are taken into account by folding the
theoretical signal plus the LXe response with the
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Sub-GeV Dark
Matter

Limit setting

e\We use the 86% of the available
exposure of continuous readout
data

*\We use the optimum interval
method

*We require a 0.9 value of the test
statistic corresponding to a 90%
C.L. upper limit in the coupling
constant fro each model
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Cross section fixed at
the derived 90% C.L.
for the case of a
heavy mediator
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XENONI1T SE (This Work)

The exposure due to
the time-separation cut
from the primary S2,
as a function of the S2
size is [1.8, 18.7, 30.8]
kg days for 1,2 and 3-5
electrons
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Sub-GeV Dark
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Limit setting 10-37
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Sub-GeV Dark
Matter

Limit setting

e\We use the 86% of the available
exposure of continuous readout
data

Kinetic Mixing €

*\We use the optimum interval
method

Jae

*We require a 0.9 value of the test
statistic corresponding to a 90%
C.L. upper limit in the coupling
constant fro each model
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Conclusion

eStudy of the low energy S2-spectrum and the Few electron
background.

Analysis of the phenomenology of the few-electron backgrounds

eUsing the sensitivity of the detector to small charge signals for
the search ot a light dark matter interacting leptonically

Large dual-phase liquid xenon detectors haven't reach the limit of their

scientific potential for the search of light dark matter — R&D is needed to
develop a background model for SE or to eliminate it in a hardware manner.

oFor example the Xe-Lab of LPNHE is a project to conduct a

thorough investigation of the few electrons background in a Xe
TPC.



