

Studies of primary and secondary scintillation yield in krypton

R.D.P. Mano¹, J.M.R. Teixeira¹, C.A.O. Henriques¹, C.M.B. Monteiro¹

¹LIBPhys, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal

E-mail: rdpmano@uc.pt

XeSAT 2022 International Workshop on Applications of Noble Gas Xenon to Science and Technology

Noble Gases have high photoionization cross sections and high secondary scintillation yields

Higher density and atomic numberLower ionization and excitation energies

Higher natural abundancyLowest cost

Noble Gases have high photoionization cross sections and high secondary scintillation yields

Higher density and atomic numberLower ionization and excitation energies

Higher natural abundancyLowest cost

What about Krypton?

Noble Gases have high photoionization cross sections and high secondary scintillation yields

Higher density and atomic numberLower ionization and excitation energies

Higher natural abundancyLowest cost

What about Krypton?

□ Radioactive (85 Kr) → additional background

Noble Gases have high photoionization cross sections and high secondary scintillation yields

39.948

Argon

[Ne] 3s²3p⁶

Noble gas

□ Higher density and atomic number □ Lower ionization and excitation energies

Higher natural abundancy

Lowest cost

in the Experimental Search for 2K(2v)-Capture in ⁷⁸Kr

Yu. M. Gavrilyuk^a, A. M. Gangapshev^a, V. V. Kazalov^a, *, V. V. Kuzminov^a, S. I. Panasenko^b, S. S. Ratkevich⁶, D. A. Tekueva^a, and S. P. Yakimenko^a ^aInstitute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312 Russia ^bKarazin Kharkiv National University, Kharkiv, 61022 Ukraine *e-mail: vvk1982@mail.ru

Abstract—A brief description of the results of joint analysis of data obtained in long-term measurements of krypton samples differing in ⁷⁸Kr content is presented. Low-background high-pressure proportional gas counters were used as detectors. The comparative analysis of experimental data on single and double K-capture provided the first estimate of the probability of production of a double K-shell vacancy in the process of K-shell electron capture in ⁸¹Kr: $P_{KK} = [5.7 \pm 0.8 \text{ (stat.)} \pm 0.4 \text{ (syst.)}] \times 10^{-5}$. A new result for the half-life of ⁷⁸Kr with respect to the 2K(2v)-mode was also obtained: $T_{1/2} = \left[1.9^{+1.3}_{-0.7} \text{ (stat.)} \pm 0.3 \text{ (syst.)}\right] \times 10^{22} \text{ years (90\% CL)}.$

Noble Gases have high photoionization cross sections and high secondary scintillation yields

Higher density and atomic numberLower ionization and excitation energies

Higher natural abundancyLowest cost

What about Krypton?

Results of In-Depth Analysis of Data Obtained in the Experimental Search for 2K(2v)-Capture in ⁷⁸Kr

Yu. M. Gavrilyuk^a, A. M. Gangapshev^a, V. V. Kazalov^a, *, V. V. Kuzminov^a, S. I. Panasenko^b, S. S. Ratkevich^b, D. A. Tekueva^a, and S. P. Yakimenko^a ^aInstitute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312 Russia ^bKarazin Kharkiv National University, Kharkiv, 61022 Ukraine *e-mail: vvk 1982@mail.ru

Abstract—A brief description of the results of joint analysis of data obtained in long-term measurements of krypton samples differing in ⁷⁸Kr content is presented. Low-background high-pressure proportional gas counters were used as detectors. The comparative analysis of experimental data on single and double *K*-capture provided the first estimate of the probability of production of a double *K*-shell vacancy in the process of *K*-shell electron capture in ⁸¹Kr: $P_{KK} = [5.7 \pm 0.8 \text{ (stat.)} \pm 0.4 \text{ (syst.)}] \times 10^{-5}$. A new result for the half-life of ⁷⁸Kr with respect to the 2*K*(2 ν)-mode was also obtained: $T_{1/2} = [1.9^{+1.3}_{-1.7} \text{ (stat.)} \pm 0.3 \text{ (syst.)}] \times 10^{22} \text{ years (90\% CL)}$.

however...

- □ Radioactive (⁸⁵Kr) \rightarrow additional background \rightarrow
- Less dense than Xenon
- More expensive than Argon

Noble Gases have high photoionization cross sections and high secondary scintillation yields

Higher density and atomic numberLower ionization and excitation energies

however...

Higher natural abundancyLowest cost

What about Krypton?

Results of In-Depth Analysis of Data Obtained in the Experimental Search for 2K(2v)-Capture in ⁷⁸Kr

Yu. M. Gavrilyuk^a, A. M. Gangapshev^a, V. V. Kazalov^a, *, V. V. Kuzminov^a, S. I. Panasenko^b, S. S. Ratkevich^b, D. A. Tekueva^a, and S. P. Yakimenko^a
^aInstitute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312 Russia ^bKarazin Kharkiv National University, Kharkiv, 61022 Ukraine *e-mail: vvk 1982@mail.u

Abstract—A brief description of the results of joint analysis of data obtained in long-term measurements of krypton samples differing in ⁷⁸Kr content is presented. Low-background high-pressure proportional gas counters were used as detectors. The comparative analysis of experimental data on single and double *K*-capture provided the first estimate of the probability of production of a double *K*-shell vacancy in the process of *K*-shell electron capture in ⁸¹Kr: $P_{KK} = [5.7 \pm 0.8 \text{ (stat.)} \pm 0.4 \text{ (syst.)}] \times 10^{-5}$. A new result for the half-life of ⁷⁸Kr with respect to the 2*K*(2 ν)-mode was also obtained: $T_{1/2} = [1.9^{+1.3}_{-1.7} \text{ (stat.)} \pm 0.3 \text{ (syst.)}] \times 10^{22} \text{ years (90\% CL)}$.

- □ Radioactive (85 Kr) \rightarrow additional background
- Less dense than Xenon
- More expensive than Argon
- Cheaper than Xenon
- Denser than Argon
- □ Higher absorption cross section for X-rays in the 14 to 34 keV range
- Better position resolution values for X-rays in the 14 to 34 keV range

Noble Gases have high photoionization cross sections and high secondary scintillation yields

Higher density and atomic numberLower ionization and excitation energies

Higher natural abundancyLowest cost

What about Krypton?

- □ Radioactive (85 Kr) \rightarrow additional background
- Less dense than Xenon
- More expensive than Argon
- Cheaper than Xenon
- Denser than Argon
- □ Higher absorption cross section for X-rays in the 14 to 34 keV range
- Better position resolution values for X-rays in the 14 to 34 keV range

[F. Sauli. Gaseous Radiation Detectors: Fundamentals and Applications. Cambridge: Cambridge University Press, 2014.]

Noble Gases have high photoionization cross sections and high secondary scintillation yields

Higher density and atomic numberLower ionization and excitation energies

What about Krypton?

- □ Radioactive (85 Kr) → additional background
- Less dense than Xenon
- More expensive than Argon
- Cheaper than Xenon
- Denser than Argon
- □ Higher absorption cross section for X-rays in the 14 to 34 keV range
- Better position resolution values for X-rays in the 14 to 34 keV range

Higher natural abundancyLowest cost

[C. D. R. Azevedo et al., Physics Letters B, 741:272-275, 2015.]

'A simulation toolkit for electroluminescence assessment in rare event experiments'

[C.A.B. Oliveira et al., 2011]

[6] F.P. Santos, et al., J. Phys. D. Appl. Phys. 27 (1994) 42.
[9] C.M.B. Monteiro, et al., J. Instrum. 2 (2007) P05001.
[10] C.M.B. Monteiro, et al., Phys. Lett. B 668 (2008) 167.

- For Xe and Ar the secondary scintillation yield is already well established;
- Xenon is the gas that has the highest secondary scintillation gains in the linear region, followed by krypton, argon and neon;
- No experimental data to backup the secondary scintillation yield results obtained for krypton.

Secondary Scintillation Yield

Experimental Setup

Method

Results

Experimental Setup

Absorption region: 2.5 cm

□ Scintillation region: 0.9 cm

- □ The Large Area Avalanche Photodiode (LAAPD) is a deep-UV enhanced series from Advanced Photonix Inc., with 16mm active diameter. It was biased at 1840V, corresponding to a gain of approximately 150.
- □ 1.1 bar of krypton, purified by St707 SAES getters, which were set to a stable temperature of about 150°C.
- Detector irradiated with X-rays from a ⁵⁵Fe radioactive source.

The full absorption of the 5.9 keV X-ray in the LAAPD will produce an a average number of free electrons, N_{XR}, given by:

$$N_{XR} = \frac{E_{XR}}{W_{Si}}$$

The average number of VUV photons impinging the LAAPD for the scintillation pulses due to the 5.9-keV X-ray full-absorption in the gas is:

$$\mathsf{N}_{\mathsf{VUV},\mathsf{LAAPD}} = \frac{A_{\mathsf{VUV}}}{A_{\mathsf{dXR}}} \times \frac{N_{\mathsf{XR}}}{Q_E}$$

■ The **total number of VUV photons** produced by the full absorption of the 5.9 keV X-ray in the detector is:

$$\mathsf{N}_{\mathsf{VUV},\mathsf{total}} = \frac{\mathsf{N}_{\mathsf{VUV},\mathsf{LAAPD}}}{T \times \Omega_{rel}}$$

□ The **average number of primary electrons** produced in krypton by full absorption of the 5.9 keV X-ray is:

$$N_e = \frac{E_{XR}}{W_{Kr}}$$

• Therefore, the **reduced secondary scintillation yield** is given by:

$$\frac{Y}{p} = \frac{N_{VUV,total}}{N_e \times d \times p}$$

Results

- The slope of the linear dependence corresponds to the **scintillation amplification parameter**, i.e., the number of photons produced per drifting electron and per volt.
- A value of about 113 ± 14 photons/kV was measured for reduced electric fields between 1.0 and 3.3 kV cm⁻¹ bar⁻¹.

^[1] T.H.V.T. Dias et al., A unidimensional Monte-Carlo simulation of electron drift velocities and electroluminescence in argon, krypton and xenon, J. Phys. D, Appl. Phys. 19 (1986) 527.

^[2] C.A.B. Oliveira et al., A simulation toolkit for electroluminescence assessment in rare event experiments, Phys. Lett. B 703 (2011) 217.

^[3] C.M.B. Monteiro, et al., Secondary Scintillation Yield in Pure Xenon, J. Instrum. 2 (2007) P05001.

^[4] C.M.B. Monteiro et al., Secondary scintillation yield in pure argon, Physics Letters B, Volume 668, Issue 3, 2008, Pages 167-170.

Primary Scintillation

Experimental Setup

Method

Preliminary Results

Experimental Setup

- Absorption region: 5.0 cm
- □ Scintillation region: 0.9 cm
- **D** PMT with a MgF_2 window.
- □ 1.1 bar of krypton, purified by St707 SAES getters, which were set to a stable temperature of about 150°C.

- Detector irradiated with X-rays from a ⁵⁵Fe and a ²⁴⁴Cm radioactive sources.
- PMT waveforms were digitized using a high sampling-rate oscilloscope (10GS/s)

- □ PMT waveforms are triggered on the rising edge of the **secondary scintillation signal (S2)**
- □ The amplitude of the primary scintillation signal (S1) is very low and may be indistinguishable from the electronic noise
- An average over several waveforms is performed to reduce the electronic noise to a low level
- **Background events are discriminated** to avoid additional contamination in the S1 region

Method – Waveform sampling and averaging

□ Typical average waveform obtained for **5.9 keV X-rays** (average of ~ 120k events)

- □ Primary scintillation signal is now visible
- □ The tail on the right of S1 results from the interaction of X-rays at different depths in the absorption region

 $\hfill\square$ A PMT calibration is needed to obtain the absolute values of S1 and S2

- □ Single photoelectron waveform obtained using a LED
- Linear fit to correct baseline offset
- □ Long integration region to include wave reflections

Sum of 4 Gaussians (electronic noise, 1phe, 2phe and 3phe) to fit the single photoelectron distribution

Method – Corrected waveform

Geometrical efficiency (GE) computed along the detector central axis using GEANT4

- Longitudinal position of X-ray interactions was determined using the electron drift velocity calculated
- □ Average waveform corrected using the computed GE
- □ Acceptable agreement between the corrected waveform and the theoretical X-ray absorption

Electron Drift Velocity

Drift Electric Field [kV cm ⁻¹ bar ⁻¹]	Experimental [mm/us]	Literature [1] [mm/us]
0.22	1.865	1.841
0.19	1.791	1.784
0.15	1.720	1.683
0.11	1.634	1.607

Electron drift velocities obtained are in good agreement with the results found in the literature [1]

Primary Scintillation		
X-ray energy [keV]	W _{sc} -value [eV]	
5.9	106.6 ± 5% (sta.) ± 24% (sys.)	
14.3	113.9 ± 5% (sta.) ± 24% (sys.)	

□ W_{sc}-values of 106.6 eV and 113.9 eV were obtained, for 5.9 and 14.3 keV X-rays, respectively.

[1] J. L. Pack, et al, "Longitudinal electron diffusion coefficients in gases: Noble gases", Journal of Applied Physics 71, 5363-5371 (1992)

• Secondary Scintillation Yield

Absolute measurements of the secondary scintillation yield obtained in a Kr GPSC were reported.

- □ The obtained experimental results are compatible with results from simulation available in the literature.
- □ The scintillation amplification parameter obtained in **Kr**, **113 photons/kV**, is about 15% lower than the one obtained in **Xe**, **137 photons/kV** [1], and 40% higher than the one obtained in **Ar**, **81 photons/kV** [2].

• Primary Scintillation

- □ Absolute values of 106.6 eV and 113.9eV were obtained for the w_{sc}-value in Kr, for 5.9 keV and 14.3 keV X-rays, respectively.
- □ S1 will be determined for alpha-particles and different X-rays energies, in runs with more events.

[1] C.M.B. Monteiro, et al., Secondary Scintillation Yield in Pure Xenon, J. Instrum. 2 (2007) P05001.
[2] C.M.B. Monteiro et al., Secondary scintillation yield in pure argon, Physics Letters B, Volume 668, Issue 3, 2008, Pages 167-170.
[3] C.M.B. Monteiro et al., An argon gas proportional scintillation counter with UV avalanche photodiode scintillation readout, IEEE Trans. Nucl. Sci. 48 (2001) 1081-1086.

Thank you for your attention

Acknowledgements

This work is funded by national funds through FCT–Fundação para a Ciência e a Tecnologia, I.P., in the framework of project UIDB/FIS/04559/2020 and UIDP/FIS/04559/2020.

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional **FCT** Fundação para a Ciência e a Tecnologia