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[F. Sauli. Gaseous Radiation Detectors: Fundamentals and 
Applications. Cambridge: Cambridge University Press, 2014.]
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[C. D. R. Azevedo et al., Physics Letters B, 741:272–275, 2015.]



[6] F.P. Santos, et al., J. Phys. D. Appl. Phys. 27 (1994) 42.
[9] C.M.B. Monteiro, et al., J. Instrum. 2 (2007) P05001.
[10] C.M.B. Monteiro, et al., Phys. Lett. B 668 (2008) 167.

‘A simulation toolkit for electroluminescence assessment in rare event experiments’
[C.A.B. Oliveira et al., 2011]

❑ For Xe and Ar the secondary scintillation yield is already well
established;

❑ Xenon is the gas that has the highest secondary scintillation
gains in the linear region, followed by krypton, argon and
neon;

❑ No experimental data to backup the secondary
scintillation yield results obtained for krypton.
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Experimental Setup
❑ Absorption region: 2.5 cm

❑ Scintillation region: 0.9 cm

❑ The Large Area Avalanche Photodiode (LAAPD) is a deep-UV
enhanced series from Advanced Photonix Inc., with 16mm active
diameter. It was biased at 1840V, corresponding to a gain of
approximately 150.

❑ 1.1 bar of krypton, purified by St707 SAES getters, which were set
to a stable temperature of about 150°C.

❑ Detector irradiated with X-rays from a 55Fe radioactive source.
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❑ The full absorption of the 5.9 keV X-ray in the LAAPD will produce 
an a average number of free electrons, NXR, given by:

NXR = 𝐸𝑋𝑅
𝑊𝑆𝑖

❑ The average number of VUV photons impinging the LAAPD for 
the scintillation pulses due to the 5.9-keV X-ray full-absorption in 
the gas is:

NVUV,LAAPD = 𝐴VUV
𝐴dXR

×
𝑁XR

𝑄𝐸

❑ The total number of VUV photons produced by the full absorption 
of the 5.9 keV X-ray in the detector is:

NVUV,total = NVUV,LAAPD
𝑇 × 𝛺𝑟𝑒𝑙

❑ The average number of primary electrons produced in krypton by 
full absorption of the 5.9 keV X-ray is: 

Ne = 𝐸𝑋𝑅
𝑊𝐾𝑟

❑ Therefore, the reduced secondary scintillation yield is given by: 

𝑌

p
= NVUV,total

Ne×d × p

Method

LAAPD 
direct X-rays

AVUV

Adxr



• The slope of the linear dependence corresponds to the scintillation amplification parameter, i.e., the number of photons produced per 
drifting electron and per volt. 

• A value of about 113 ± 14 photons/kV was measured for reduced electric fields between 1.0 and 3.3 kV cm−1 bar−1.

[1] T.H.V.T. Dias et al., A unidimensional Monte-Carlo simulation of electron drift velocities and electroluminescence in argon, krypton and xenon, J. Phys. D, Appl. Phys. 19 (1986) 527.
[2] C.A.B. Oliveira et al., A simulation toolkit for electroluminescence assessment in rare event experiments, Phys. Lett. B 703 (2011) 217.
[3] C.M.B. Monteiro, et al., Secondary Scintillation Yield in Pure Xenon, J. Instrum. 2 (2007) P05001.
[4] C.M.B. Monteiro et al., Secondary scintillation yield in pure argon, Physics Letters B, Volume 668, Issue 3, 2008, Pages 167-170.
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Experimental Setup

❑ Detector irradiated with X-rays from a 55Fe and a 244Cm
radioactive sources.

❑ PMT waveforms were digitized using a high sampling-rate
oscilloscope (10GS/s)

Stainless Steel

Macor insulator

Indium gasket

Copper ring

❑ Absorption region: 5.0 cm

❑ Scintillation region: 0.9 cm

❑ PMT with a MgF2 window.

❑ 1.1 bar of krypton, purified by St707 SAES getters,
which were set to a stable temperature of about 150°C.



Method – Waveform sampling and averaging

S2

❑ PMT waveforms are triggered on the rising edge of the secondary scintillation signal (S2)

❑ The amplitude of the primary scintillation signal (S1) is very low and may be indistinguishable from the electronic noise

❑ An average over several waveforms is performed to reduce the electronic noise to a low level 

❑ Background events are discriminated to avoid additional contamination in the S1 region 



Method – Waveform sampling and averaging

❑ Typical average waveform obtained for 5.9 keV X-rays (average of ~ 120k events) 

❑ Primary scintillation signal is now visible

❑ The tail on the right of S1 results from the interaction of X-rays at different depths in the absorption region

S2



Method – PMT calibration

                                    

         

  

    

 

   

 

   

 

   

 

 
 
 
   
 
 
 
  
 
 
 

                             

❑ A PMT calibration is needed to obtain the absolute values of S1 and S2 

❑ Single photoelectron waveform obtained using a LED

❑ Linear fit to correct baseline offset

❑ Long integration region to include wave reflections

Integration region 
(-10  to 200 ns)

Baseline offset
(linear fit)

❑ Sum of 4 Gaussians (electronic noise, 1phe, 2phe and 3phe) to 

fit the single photoelectron distribution 



Method – Corrected waveform 

❑ Geometrical efficiency (GE) computed along the 
detector central axis using GEANT4

❑ Longitudinal position of X-ray interactions was 
determined using the electron drift velocity calculated

             

                                 

 

 

  

  

  

  

  

  

  

  

 
 
 
 
 
  
  
 
   
  
  
  
 
 
  
  

 

      

           

             

                          

 

    

   

    

   

    

   

    

   

 
 
  
   
 
  
 
 
   
 
 
 

                     

                      

                     

                           

❑ Average waveform corrected using the computed GE

❑ Acceptable  agreement between the corrected waveform and the theoretical X-ray absorption

S2

S1



Preliminary Results

Electron Drift Velocity
Drift Electric Field

[kV cm-1 bar-1]

Experimental
[mm/us]

Literature [1]
[mm/us]

0.22 1.865 1.841

0.19 1.791 1.784

0.15 1.720 1.683

0.11 1.634 1.607

Primary Scintillation

X-ray energy
[keV]

Wsc-value
[eV]

5.9 106.6 ± 5% (sta.) ± 24% (sys.)

14.3 113.9 ± 5% (sta.) ± 24% (sys.)

❑ Electron drift velocities obtained are in good agreement with the results found in the literature [1]

[1]  J. L. Pack, et al, "Longitudinal electron diffusion coefficients in gases: Noble gases", Journal of Applied Physics 71, 5363-5371 (1992)

❑ Wsc-values of 106.6 eV and 113.9 eV were obtained, for 5.9 and 14.3 keV X-rays, respectively.



❑ Absolute measurements of the secondary scintillation yield obtained in a Kr GPSC were reported.

❑ The obtained experimental results are compatible with results from simulation available in the literature.

❑ The scintillation amplification parameter obtained in Kr, 113 photons/kV, is about 15% lower than the one

obtained in Xe, 137 photons/kV [1], and 40% higher than the one obtained in Ar, 81 photons/kV [2].

[1] C.M.B. Monteiro, et al., Secondary Scintillation Yield in Pure Xenon, J. Instrum. 2 (2007) P05001.
[2] C.M.B. Monteiro et al., Secondary scintillation yield in pure argon, Physics Letters B, Volume 668, Issue 3, 2008, Pages 167-170.
[3] C.M.B. Monteiro et al., An argon gas proportional scintillation counter with UV avalanche photodiode scintillation readout, IEEE Trans. Nucl. Sci. 48 (2001) 1081-1086. 

Conclusions

• Secondary Scintillation Yield

• Primary Scintillation

❑ Absolute values of 106.6 eV and 113.9eV were obtained for the wsc-value in Kr, for 5.9 keV and 14.3 keV X-rays,

respectively.

❑ S1 will be determined for alpha-particles and different X-rays energies, in runs with more events.
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